BABES—BOLYAI TUDOMANYEGYETEM KOLOZSVAR
MATEMATIKA ES INFORMATIKA KAR
DIDAKTIKAI MESTERI — INFORMATIKA SZAK

Magiszteri dolgozat

Szamitogépes grafika keretrendszer
kozépiskolasoknak

TRADITIO NOSTRA
UNACUM EUROPAE

VIRTUTIBUS SPLENDET

TEMAVEZETO: SZERZO:

DR. MEZEI ILDIKO-ILONA, BEILAND ARNOLD
EGYETEMI ADJUNKTUS

2023

BABES—BOLYAI UNIVERSITY OF CLUJ-NAPOCA

FACULTY OF MATHEMATICS AND INFORMATICS
SPECIALIZATION: MASTER IN DIDACTICS — COMPUTER
SCIENCE

Master’s Thesis

A computer graphics framework for high
school students

TRADITIO NOSTRA
UNACUM EUROPAE

VIRTUTIBUS SPLENDET

ADVISOR: AUTHOR:

ILDIKO-ILONA MEZEI, PHD. ARNOLD BEILAND
UNIVERSITY LECTURER

2023

UNIVERSITATEA BABES—BOLYAI, CLUJ-NAPOCA
FACULTATEA DE MATEMATICA SI INFORMATICA
SPECIALIZAREA MASTERAT DIDACTIC — INFORMATICA

Lucrare de disertatie

Framework de grafica computationala pentru
elevi de liceu

TRADITIO NOSTRA
UNACUM EUROPAE

VIRTUTIBUS SPLENDET

CONDUCATOR STIINTIFIC: ABSOLVENT:

LECTOR DR. ILDIKO-ILONA MEZEI ARNOLD BEILAND

2023

BABES—BOLYAI UNIVERSITY OF CLUJ-NAPOCA

FACULTY OF MATHEMATICS AND INFORMATICS
SPECIALIZATION: MASTER IN DIDACTICS — COMPUTER
SCIENCE

Master’s Thesis

A computer graphics framework for
high school students

Abstract

We propose a low-level C++ computer graphics framework suitable for facilitating the tea-
ching of some aspects of computer programming in a high school environment.

Students can color the pixels of a Ul window and render text using simple function calls. No
prerequisite knowledge of object-oriented programming or computer graphics is necessary, the
exercises and problems proposed in this text can be solved using the basic features of C++ that
are covered by the high school curriculum in Romania for students enrolled in the mathematics
and computer science program, grades 9—11.

Starting with simple example code we provide a set of problems with gradually increasing
difficulty that are solvable using the two functions exposed by the framework in the hope of
sparking interest for computer graphics and programming in general and motivating students to
deepen their knowledge. Here they are provided with a way to generate graphical output, which
complements the text based I/O in programs that they are usually required to write (either using
the standard I/O streams or input and output files).

The implementation of this framework is an adapter layer over FLTK, a cross-platform GUI
toolkit. Relying on it made it easier for us to provide a platform-independent implementation
that can be used on Microsoft Windows operating systems and GNU/Linux distributions as
well.

I would like to thank my advisor, Ildiké-Ilona Mezei, who helped me shape these ideas
into a form suitable for an educational setting and reviewed the text, providing feedback that is
highly appreciated.

This work is the result of my own activity. I have neither given nor received unauthorized
assistance on this work.

2023 ARNOLD BEILAND

ADVIS/OR:
ILDIKO-ILONA MEZEI, PHD.
UNIVERSITY LECTURER

Tartalomjegyzék

1.

Bevezeto

1.1. A keretrendszer haszndlata
1.2. Fordités, projektszerkezet L L
Gyakorlatok, feladatok

2.1. A példakdd kozelebbrdlo oL
2.2. Négyzetekrajzoldsa
2.3. Rajzoljunk sakktablat oL Lo L
24. Szinatmeneteko Lo
25, Ceruza e
2.6. Szovegvezérelt rajzoloprogram L Lo
Fliggvényabrazol6 program készitése

3.1. Megfeleltetési szabdlyok kiértékelése
3.2. Koordinata-rendszer és fiiggvénygorbéko oo
3.3. Geometriai transzformdciok oL

N DN

1. fejezet

Bevezeto

Hazéankban a kozépiskolai programozasoktatds sordn a didkokat olyan (C++, C vagy Pascal)
programok megirdsara tanitjuk, melyek szoveges bemenetbdl valamilyen algoritmussal szove-
ges kimenetet allitanak el6. Ez az elején csak a standard bemenet és kimenet felhasznéldsat
jelenti, kés6bb pedig beolvasast szoveges fajlokbdl és ezekbe valo irdst (illetve a standard ki/-
bemenet és a fajlmiiveletek tetszdleges kombindcidit). A hangsily az informacié feldolgozasa-
ra, az alapvetd algoritmusok megalkotdsara és megértésére helyezddik, az adatok megjelenési
formdja masodlagos.

Jelen dolgozatban szeretnénk egy konnyen haszndlhaté C++ keretrendszert javasolni gra-
fikus kimenet el6allitdsara annak reményében, hogy a széveges adatok haszndlata mellé egy
érdekes és latvanyos eszkoz keriil a didkok kezébe, 0sztondzve Oket a kisérletezésre €s gon-
dolkodésra. Javasolunk néhany (kezdetben egyszer(ibb, majd egyre bonyolultabb) feladatot is,
melyek segitségével a tandrok kisebb-nagyobb kihivasokat allithatnak didkjaik elé. A feladatok
egy része interdiszciplindris jellegli, megoldasukhoz sziikséges lesz felhasznalni néhany alapis-
meretet az analitikus geometria teriiletérol.

Bér szamos nyilt forraskodi C++ grafikus keretrendszer és eszkoztér 4ll a programozok ren-
delkezésére (Qt!, GTK?, WxWidgets®, FLTK* stb.), ezek altaldban lényeges mértékben tdmasz-
kodnak az objektumorientélt programozas elemeire (6roklés, polimorfizmus), illetve esetenként
fliggvénymutatok és sablonok hasznélatdra. A kozépiskolai kornyezetben valé alkalmazds vi-
szont ebbdl a szempontbdl jelentds megszoritasokkal jar, hiszen ezek a technikdk mar tdlmutat-
nak a kozépiskoldsok nagy részének programozastudasan, megtanitasukat a jelenleg érvényes

tantervek nem {irjdk el6. Ennek értelmében egy teljesen procedurdlis grafikus konyvtarra len-

"https://www.qt.io/
’https://gtk.org/

3https ://www.wxwidgets.org/
“https://wuw.fltk.org/

https://www.qt.io/
https://gtk.org/
https://www.wxwidgets.org/
https://www.fltk.org/

1. FEJEZET: BEVEZETO

ne sziikségiink, amit a didkok a megszokott kornyezetbdl haszndlhatnak (Code::Blocks IDE
és GCC forditocsomag, jellemzéen Microsoft Windows operécids rendszeren vagy valamilyen
GNU/Linux disztribtcién).

Az alapotlet forrdsai az Olive.c projekt [Kutepov] és a gfx nevii grafikus konyvtar [Thain].
Az el6bbi bizonyos grafikus primitivek (pl. haromszog, ellipszis stb.) kirajzolasaval foglalkozik,
de csak memoridban 4llitja el6 a kimenetet megjelenités nélkiil. Az utébbi tud grafikus ablako-
kat kezelni, de csak X Window System?® f616tt miikodik. Azt is szeretnénk viszont elérni, hogy a
grafikus primitivek (haromszogek, vonalak stb.) kirajzoldsa mar a didkok feladata legyen, csak
egy-egy pixel szinének bedllitdsara biztositsunk nekik beépitett fiiggvényt.

Ennek érdekében egy FLTK-ra épiild procedurdlis keretrendszert allitottunk 0ssze Simple
Graphics Framework (SGF) néven, mely Microsoft Windows operacids rendszereken és GNU/-
Linux disztribucidkon is konnyen hasznédlhaté néhany konfiguracids 1€pés elvégzése utdn.

A fejezet tovabbi részében ennek technikai részleteit mutatjuk be. A mésodik fejezetben sze-
retnénk néhany fokozatosan nehezedd feladatot javasolni a keretrendszer haszndlatara, a harma-
dik fejezetben pedig egy fiiggvénydbrazol6 program elkészitésének Iépeseit mutatjuk be, mely
egy didkok altal implementélhatd, a megszokott programjaikndl nagyobb kiterjedést szoftver-
projekt.

Koszonettel tartozom témavezetémnek, Dr. Mezei I1diké-Ilonanak, akitdl hasznos vissza-

jelzéseket kaptam bemutatott 6tletek, feladatok és a dolgozat 6sszedllitdsara vonatkozdan.

1.1. A keretrendszer hasznalata

A keretrendszerrel készithet6 legegyszeriibb projekt harom f4jlbol 4ll: a keretrendszer imp-
lementacidja (main.cpp néven), egy forrasfdjl, melyben a felhaszndlé kddja talalhat6 (ennek
neve tetszOleges) és egy header-dllomény (sgf.h), melyben egyrészt a keretrendszer éltal bizto-
sitott, masrészt a felhasznal6 kodjatdl elvart fiiggvények deklardcidja taldlhaté néhany konstans
kiséretében. Ezt a fejallomanyt mindkét forrdsfdjlba beillesztjiik a megszokott #include direkti-
va segitségével.

A forditds sordn a két forrasfa;jlt (akar kiilon modulként) targykddda forditjuk, majd egyetlen

végrehajthat6 dllomanyt készitiink belSle, megadva a szerkesztonek az FLTK eszkoztar bindris

Shttps://www.x.org/wiki/

https://www.x.org/wiki/

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

1. FEJEZET: BEVEZETO

fajljainak elérési utvonaldt is. A didkoktdl nem varjuk el, hogy a forditds technikai részleteit
ismerjék, ezekkel az eldre elkészitett Code::Blocks projekt build rendszere foglalkozik majd.
A ko6z0s header-dllomany kodjat a mellékletben megtaldlhat6 src/sgf.h fajl tartalmazza. Els6

része a keretrendszer 4ltal biztositott eszkozok deklaracidja (1.1. kddrészlet).

// represents the color of a pixel,
// color components are one-byte integers (0..255)
struct Color {
uint8_t r, g, b;
}s

// can be used for logging status info

// (instead of cout)

extern std::ofstream logfile;

// drawing functions provided by the framework:
void draw_pixel(int row, int col, Color color);
void draw_text(int row, int col,

Color color, int size,
const char *text);

1.1. kodrészlet. A keretrendszer altal biztositott eszkozok

Az elején megadunk egy szin struktirit, mely egy-egy pixel szinét tudja tarolni. Ezt ko-
veti egy ostream tipusud objektum, amibe napléiizeneteket lehet irni, melyek az aktudlis mun-
kakonyvtarban 1étrehozott logfile.txt nevl allomdnyba ir6dnak. Ide a keretrendszer is irhat
tizeneteket (példaul helytelen koordinatdkra valo rajzolds esetén).

Ezek utdn a keretrendszer dltal biztositott rajzoléfiiggvények megadasa kovetkezik. Az elsd
fliggvénnyel egy adott pixelnek lehet a szinét bedllitani. A grafikus ablakot egy pixelekbdl all6
matrixként képzeljiik el, igy a pixel pozicidjat a sor- és oszlopindexe azonositja, szinét pedig az
elébb emlitett struktira adja meg.

Mivel alacsony szinten akarjuk tartani a konyvtérat, az egyetlen rajzoléfiiggvényiink tulaj-
donképpen a draw_pixel(...) kellene legyen. Szerettiink volna ugyanakkor lehet6séget adni
a didkoknak szoveges tartalom megjelenitésére is, de mivel a szoveg pixelekké alakitdsa mér
elég nehéz feladat, ezért erre is adunk kész fliggvényt (mely ugyanakkor az FLTK eszkoztar
hasonl6 funkcionalitdsara timaszkodik). Itt az elébbi fiiggvény harom paraméterén kiviil még
megadjuk a pixelekben kifejezett betliiméretet, illetve a szoveget, amit ki akarunk irni. A sor- és

oszlopindex ezen fiiggvény esetén az elsd betli bal als6 sarkdnak koordinétdit jelenti.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

1. FEJEZET: BEVEZETO

A fejallomany kovetkez6 része azon fiiggvények bejelentését tartalmazza, melyek imple-
mentécidja a felhaszndl6é (didk) kodjaban kell megjelenjen (1.2. kodrészlet). Az inicializald
fliggvényt csak a program futdsdnak kezdetekor hivja majd meg a keretrendszer, ez alkalmas

példaul bemeneti fajlok adatainak beolvasasara vagy egyéb kezddértékek bedllitasara.

// The following functions have to be implemented in user code:

// called once when the program starts
void initialize();

// called every time the window needs to be rendered,
// should render all graphical content via calls to
// draw_pixel and draw_text

void render(int width, int height);

// mouse events:

bool on_scroll (int delta); // delta can be positive or negative

bool on_move(int row, int col); // row and col are the current position
bool on_mouse_down () ;

bool on_mouse_up();

// key events, the key parameter can be any
// key code (including the constants below);
// regular characters have the same code as
// in ASCII

bool on_key_down(int key);

bool on_key_up(int key);

1.2. kédrészlet. Az implementalandé fiiggvények

A render(...) fliggvény meg lesz hivva minden olyan esetben, amikor az ablak tartalmd-
nak kirajzolésa sziikségessé valik (ilyen az elsd megjelenités, az atméretezések €s minden olyan
esemény, melynek kovetkeztében az operacids rendszer ablakkezel6je ezt megkoveteli). Min-
den meghivis el6tt az ablak tartalma fehér pixelekkel inicializdlddik, tehat minden elemet Gjbol
ki kell rajzolni (nem csak azt a részt, ami eddig nem létezett példaul egy dtméretezés esetén).

A kovetkez$ négy fiiggvény az egéresemények kezelését szolgilja. Gorgetéskor megkap-
juk, hogy hany egységet mozgott a gorgé (illetve az el6jel megadja, hogy fel vagy le), mozgas-
kor azt, hogy éppen mely koordindtdkon taldlhaté az egér, illetve reagdlhatunk a bal egérgomb
megnyomadsdra €s felengedésére. A fliggvények visszatérési értéke azt jelzi, hogy djra ki kell-e
rajzolni az ablak tartalmat az esemény feldolgozdsanak kovetkeztében. Ha true értéket téri-
tilnk vissza, akkor a keretrendszer Ujra meghivja a render(...) fiiggvényt és frissiti a grafikus

ablak tartalmat, ellenkez0 esetben mindez nem torténik meg. Tehat ha valamely eseményre nem

4

1. FEJEZET: BEVEZETO

szeretnénk reagdlni, akkor az annak megfelel$ fiiggvény implementicidja egyetlen sorbol fog
allni, melyben false értéket téritiink vissza.

A kovetkezd két fiiggvény a neveiknek megfelelGen a billentylieseményekre vald reagaldst
teszi lehet6vé. Az altalunk visszatéritett érték hatdsa ugyanaz, mint az egéresemények esetén. A
keretrendszer altal kiildott paraméter értéke altaldban a lenyomott vagy felengedett billentyiinek
megfeleld karakter ASCII kédja, vagy valamilyen specidlis érték a tobbi billentyl esetén. A
fejallomany néhdny specialis billentylikodot tartalmazé konstanssal zdrul.

A felhaszndlok altal megirt kddot tehat a keretrendszer az itt felsorolt fiiggvényeken keresz-
tiill hivja meg. Ezen fiiggvények ugyanakkor hasznalhatjak a keretrendszer altal rendelkezésiik-
re bocsatott eszkozoket (a rajzolofiiggvények meghivasdnak természetesen csak a render(...)

fliggvényben, vagy az innen meghivott segédfiiggvényekben van értelme).

1.2. Forditas, projektszerkezet

A keretrendszer implementacidja az FLTK eszkoztarra épiil6 adapter réteg, mely megtalal-
hat6 a melléklet src/main.cpp allomédnydban. Azért vélasztottuk az FLTK eszkoztdrat mert a na-
tiv implementacidval ellentétben nem kell kiilon kédot frjunk a két célplatformra. Nativ megol-
dés esetén ugyanis a Microsoft Windows operacids rendszerek és a GNU/Linux disztribicidkra
feltelepitett X Window System teljesen kiilonb6z6 interfészeket adnak a programozdéknak grafi-
kus alkalmazasok készitésére. Ugyanakkor mds keretrendszerekhez képest az FLTK viszonylag
kis méretd, és a nagyobb keretrendszerek éltal biztositott tobbletfunkcionalitdsra nincs sziiksé-
giink.

Az iskolai kornyezetben val6 alkalmazhatdsag nem csak a programozasi nyelv felhasznélha-
t6 funkcidiban, hanem a fliggdségek €s eszk6zok megvalasztasakor is fontos szempont. Napja-
inkban a legtobb iskoldban a didkok Microsoft Windows operacids rendszer valamely verzidjat
haszndljék az 6rdkon. El6fordulhat, hogy a programcsomagok telepitésére viszont csak az arra
kijelolt személynek van joga (egy-egy rendszergazdanak), ezért szerettiink volna olyan megol-
dést taldlni, amihez nem kell adminisztratori jogosultsdg a rendszeren.

Az FLTK keretrendszer lefordithaté forraskddbdl is adott célrendszeren (erre vonatkozo

részletek megtaldlhatok a fejlesztk 4ltal publikdlt dokumentdcioban®). A konnyebb telepités

Shttps://www.fltk.org/documentation.php

https://www.fltk.org/documentation.php

1. FEJEZET: BEVEZETO

végett viszont az MSYS2 eszkozrendszer csomagjai kozott megtalalhato bindris véltozatot’ fog-
juk haszndlni.

Az MSYS2 olyan konyvtarak €s build eszko6zok gytjteménye, melyekkel nativ Windows
programokat lehet elkésziteni. Megfelel a célkornyezetiinknek, mert tetsz6leges konyvtarba te-
lepithetd, igy telepitéséhez nem kell adminisztritori jogosultsdg a rendszeren. Tovabba szamos
csomagot €s fiiggdséget telepithetiink vele, tobbek kozott a forditéprogramokat, a C++ standard
konyvtarat és az FLTK keretrendszert is.

A projektjeink el6készitéséhez tehat eldszor toltsiik le a legfrissebb telepit6fajlt az MSYS2
weboldalarél®, majd inditsuk el a telepitést tetsz&leges titvonalat megadva célkonyvtarként (1d.

1.1. abra).

x
€« MSYS2 Setup
Installation Folder
Setup - MEYS2
up Flease specify the directory where M332 will be installed.
Installation Folder |C:'I,m5y564 | I Brawse. ..

Start Menu shortcuts
Installing

Finished

Mexk Cancel

1.1. dbra. MSYS2 telepitési ttvonal

A telepitén végighaladva fogadjuk el az alapértelmezett bedllitdsokat, a végén pedig ne
hagyjuk megjeldlve az MSYS?2 futtatdsara vonatkozo jelolonégyzetet.

Az MSYS2 csomagban tobb alrendszer taldlhat6, mindegyik a neki megfelel$ parancssorral
és feltelepitett szoftvercsomag-gytijteménnyel. Ezek koziil itt a MinGW64 neviit fogjuk hasz-
ndlni, tehat inditsuk el a telepitési konyvtarbol a mingwé4.exe nevl programot, majd adjuk ki
a pacman -Syu parancsot és hagyjuk jova a telepitést. Ez frissiti a csomagokrol tarolt informé-
cidkat és a rendszer sajat csomagjait. A telepités végén valdszintileg djra kell majd inditani a

programot (Id. 1.2. 4bra).

"https://packages.msys2.org/package/mingw-w64-x86_64-fltk
8https://www.msys2.org/

https://packages.msys2.org/package/mingw-w64-x86_64-fltk
https://www.msys2.org/

1. FEJEZET: BEVEZETO

m - - O e
A
John@DESKTOP-PPIMKGS MIMGWES ~
% pacman -Syu
:: Synchronizing package databases...
clangarmad 1185.4 K1EB 03 KiB/s 00:01 [1 100%
i ngw3 2 1724.5 KiB 1601 KiB/s 00:01 [1 100%
1T ngwEd 1859.6 KiB 1338 KiB/s 00:01 [1 100%
ucrted 1905.1 K1B 1A05 KiB/s 00:01 [1 100%
clang3z 1705.0 KiB 933 KiB/s 00:02 [1 100%
clangéd 1852.0 KiB 9.67 MiB/s 00:00 [1 100%
msy s 452.9 KiB 433 KiB/s 00:01 [1 100%
: Starting core system upgrade...
terminate other MSYS2 programs before proceeding
resolwving dependencies. ..
Tooking for conflicting packages...
Packages (3) mintty-1-3.6.4-1 msys2-runtime-3.4.6-2 pacman-6.0.2-4
Total Download Size: 9.34 MiE
Total Installed Size: 47.66 MiB
Het Upgrade Size: 2.12 MiB
:: Proceed with installation? [¥/n] ¥
:: Retriewing packages...
mintty-1~3.6.4-1-x86_6d 217.0 KiB 2.22 MiB/s 00:00 [1 100
pacman-6.,0. 2-4-x56_&d 6.1 MiB 6.61 MiE/s 00:01 [1 100
msys2-runtime-3.4, 6-2-x86_6&d 2.4 MiB 2.44 MiB/s 00:01 [1 100%
Total {333 9.3 MiB 8.66 MiB/s 00:01 [1 100%
(3/3) checking keys in keyring [1 100%
(3/3) checking package integrity [1 100%
(3/3) Toading package files [1 100%
(3/3) checking for file conflicts [1 100%
(3/3) checking available disk space [1 100%
:: Processing package changes...
(1/3) upgrading mintty [1 100%
(2/3) upgrading msys2-runtime 1 100%
(3/3) upgrading pacman [1 100%
:: To complete this update all MSYS2 processes including this terminal will be closed. Confirm to pr
oceed [V/m] v
]

1.2. abra. MSYS?2 frissitése

Ezek utin az tdjrainditott MinGW parancssorban adjuk ki az aldbbi parancsot és hagyjuk

jova a telepitést:
pacman -Syu mingw-w64-x86_64-toolchain mingw-w64-x86_64-fltk

Ezzel feltelepitjiik GCC forditét €s GDB debuggert (a toolchain csomag részeként), illetve
az FLTK keretrendszert is.

A kovetkezSkben sziikségiink lesz a Code::Blocks integralt fejleszti kornyezetre, mely a
legtobb iskoldban rendelkezésre 4ll (illetve a didkok gépére is fel van telepitve). Ha mégsem,
akkor a weboldalukrol® letdlthetd telepitd és telepitést nem igénylé véltozat is (letdltéskor va-
laszthatjuk azon valtozatokat is, amelyekben nincs meg a MinGW csomag, hiszen az MSYS2
alatti fordit6t fogjuk majd hasznélni).

Kovetkezd 1épésben a Code::Blocks-ban beallitjuk, hogy az MSYS2 alatti fordit6t és de-

buggert szeretnénk haszndlni. Ezért el6szor a Settings menii Compiler meniipontjat vélasztva

https://www.codeblocks.org/

https://www.codeblocks.org/

1. FEJEZET: BEVEZETO

a megjelend bedllitdsablak Toolchain executables fiilén bedllitjuk a GCC forditonk telepitési

utvonalét (1d. 1.3. dbra).

Compiler settings O X
Global compiler settings

Selected cormpiler

| GNU GCC Compiler v]

Set as default Copy Renarne Delete Reset defaults

Glabal campiler Cornpiler settings Linker settings Search directories Toolchain executables Custorn variables Buile * | *
settings

Compiler's installation directory
1 — e

Cihrnsys b rin gt |E Auto-detect
MNOTE: 2l prograrns raust exist either in the "bin® sub-directory of this path, orin any of the "Additional

Program Files Additional Paths

Profiler settings

1.3. dbra. Fordit6 bedllitasa Code::Blocks-ban (amennyiben az MSYS2 rendszert a C: \msys64
utvonalra telepitettiik)

A debugger elérési utvonaldt hasonléan megadhatjuk a Settings / Debugger meniipontra

kattintva, itt mar a gdb. exe tutvonalat kell beallitani (1d. 1.4. 4bra).

Debugger settings - O x

GDBI/CDB debugger : Default

;- Comman Executable path: | Cvmsysedymingwbhbintgdb.exe| |
[=- GDB/CDE debugger
i Default Arquiments: | |

Debugger Type
® GDE () CDE

1.4. 4bra. Debugger bedllitisa Code::Blocks-ban (amennyiben az MSYS2 rendszert a
C:\msys64 utvonalra telepitettiik)

Ezen bedllitdsok utdn elkészithetjiik az elsé Code::Blocks projektet, ami haszndlja a keret-
rendszeriinket. Készitsiink egy 1j projektet az Empty project sablont valasztva a vardzslobdl,
majd a Project / Properties meniipontra kattintva felnyil6 ablak Build targets fiilén allitsuk &t
a tipust Console application-r61 GUI application-re 4gy a Debug, mint a Release konfigura-
cid esetén (I1d. 1.5. dbra). Ez azért sziikséges, hogy ne nyiljon meg minden inditdskor egy iires
konzolablak is a grafikus programunk mellett.

Masoljuk be a mellékletben taldlhaté src/main.cpp, src/sgf.h és src/examples/rendering-
sample.cpp féjlokat a Code::Blocks projekt konyvtardba, majd adjuk hozza ket a projekthez

(utobbit megtehetjiik jobb egérgombbal kattintva a projekt nevére és az Add files meniipontot

1. FEJEZET: BEVEZETO

Project/targets options [m] hed

Project settings Build targets Build scripts Notes C/C++ parser options Debugger EditorConfig options | 4 | ¥

Build targets Selected build target options
g Add Platforms: All
Release
Rename Type: GUI application ~
Duplicate Pause when execution ends

Delete L_I'EatE import I|h|'a|'-'.'.
Create .DEF exports file

1.5. abra. Projekt tipusdnak bedllitidsa Code::Blocks-ban

valasztva). Ezek utdn az 1.6. dbranak megfeleld projektszerkezet fog latszani a bal oldali pane-

len.

Q Workspace
-E sgf-test

-3 Sources
¢ L. | main.cpp

: rendering-sample.cpp
- Headers
i sgf.h

1.6. abra. Code::Blocks projekt szerkezete

Még el kell végezziink két bedllitast azért, hogy egyrészt forditaskor legyenek elérhetdek az
FLTK fejalloményai, masrészt pedig a szerkesztd szdmara legyenek elérhetéek az FLTK bindris
allomdnyai.

Futtassuk az el6bb hasznélt mingw64.exe parancssorban az fltk-config --cxxflags paran-
csot és ennek kimenetét masoljuk be a vdgdlapra. A Code::Blocks projektiink Project / Build
options meniipontjan megnyilé ablak bal oldali panelén vélasszuk ki a projekt nevét (azért,
hogy ne csak az egyik build konfiguricié bedllitasait médositsuk, hanem mindkettdt), majd az
Other compiler options fiil alatti mezdbe illessziik be az el6bb bemadsolt kimenetet, kitorolve
beldle a -02 opcidt (azaz a konnyebb debuggolds céljabol egyenldre nem kapcsoljuk be a GCC
optimizacidkat).

Majd futtassuk szintén a MinGW parancssorban az fltk-config --1ldflags parancsot és ki-
menetét masoljuk be a vagdlapra, aztan illessziik be az elobbi bedllitdsablak Linker settings
fiilének Other linker options mez6jébe, €s irjuk még a végére a -1m opciot.

Mentsiik le az beallitdsablakon elvégzett moédositdsokat, majd a projekt rendering-

sample.cpp nevi féjljaban az sgf.h fejallomdnynak megfeleld #include direktivabdl toroljiik

9

O 00 N A LR W N =

11
12
13
14
15
16
17
18
19

20

1. FEJEZET: BEVEZETO

kia ../ eldtagot (ez ugyanis csak azért keriilt oda, mert a mellékletben a példaprogramok egy
alkonyvtédron beliil helyezkednek el).

Ezek utan kellene m{ikodjon a program forditdsa és futtatdsa, egy grafikus ablak kell meg-
jelenjen, melyben a ,,Hello, world!” szoveg latszik.

Mivel a projekt elkészitési és konfigurdldsi Iépéseinek végrehajtdsakor sok a hibalehetdség,
ezeket legkozelebb mar megsporolhatjuk, ha a projektfajlt (*. cbp) és a forrdsfdjlokat lemésol-
juk, majd a projektfajlt szovegszerkesztével megnyitva kicseréljiik a kezdeti projekt nevének
minden el6forduldsét a kivant dj projektnévre, illetve ennek megfeleléen atnevezziik magat a

projektfajlt is.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<CodeBlocks_project_file>
<FileVersion major="1" minor="6" />
<Project>
<Option title="sgf-test-2" />
<Option pch_mode="2" />
<Option compiler="gcc" />
<Build>
<Target title="Debug">
<Option output="bin/Debug/sgf-test-2" prefix_auto="1"
extension_auto="1" />
<Option object_output="obj/Debug/" />
<Option type="0" />
<Option compiler="gcc" />
<Compiler>
<Add option="-g" />
</Compiler>
</Target>
<Target title="Release'>
<Option output="bin/Release/sgf-test-2" prefix_auto="1"
extension_auto="1" />
<Option object_output="obj/Release/" />

1.3. kédrészlet. Részlet a Code::Blocks projektfdjlbol

Amennyiben szeretnénk a létrejott végrehajthaté programot egyenesen a fajlrendszerbdl
vagy akar mas szamitégépen elinditani, akkor az MSYS?2 telepitési konyvtaranak mingw64/bin
alkonyvtarabol mellé kell masolni a sziikséges run-time fiiggdségeket (libfltk.dll, libgcc_s_seh-
1.dll, libstdc++-6.d1l és libwinpthread-1.dll). Amennyiben valamelyikiik hidnyzik, egy Win-
dows hibaablak értesit majd err6l minket.

Ha a projektet GNU/Linux operacids rendszer alatt akarjuk haszndlni, akkor annak fiiggvé-

nyében, hogy van-e jogunk csomagokat telepiteni a rendszerre, egyik lehet6ség, hogy az adott

10

1. FEJEZET: BEVEZETO

disztribucid szoftvergyiijteményébdl feltelepitjiik az FLTK keretrendszer csomagjat (pl. https:
//archlinux.org/packages/community/x86_64/f1tk/, https://packages.ubuntu.
com/jammy/libfltkl.3-dev stb.), vagy pedig leforditjuk kézzel forrdsk6dbdl a dokumen-
tacidban leirtaknak megfeleléen (I1d. https://www.fltk.org/doc-1.3/intro.html). Ezek
utdn a Code::Blocks projekt felépitése hasonld, annyi kiilonbséggel, hogy MinGW helyett az
adott rendszerre feltelepitett parancssort, forditot és debuggert hasznaljuk.

A mellékletben az src nevi konyvtarban megtaldlhat6 a keretrendszer és a példaprogramok
forraskodja mellett egy Makefile is, ennek segitségével a GNU Make build rendszert is hasz-
nalhatjuk programjaink leforditdsdra (amennyiben az FLTK telepitése mar megtortént), illetve
egyszerre lefordithatjuk a példaprogramokat, melyek kozott szerepel a kdvetkezd fejezetekben
targyalt feladatok egy részének megolddsa is. Ezt inkdbb tandroknak ajanljuk, hiszen a didkok
esetében pont az lenne a 1ényeg, hogy 6k jojjenek rd a feladatok megolddsara, ne kapjdk meg
készen azokat.

Szintén a melléklet része az FLTK jelenlegi verzi6janak (1.3.8) forraskddja és dokumen-
tacidja az fltk konyvtarban, tovabba egy bin-win64 nevli konyvtar a példaprogramok bindris
véltozatdval (64 bites Windows célrendszerre leforditva) és a futtatdshoz sziikséges fliggdsé-

gekkel.

11

https://archlinux.org/packages/community/x86_64/fltk/
https://archlinux.org/packages/community/x86_64/fltk/
https://packages.ubuntu.com/jammy/libfltk1.3-dev
https://packages.ubuntu.com/jammy/libfltk1.3-dev
https://www.fltk.org/doc-1.3/intro.html

2. fejezet

Gyakorlatok, feladatok

Ebben a fejezetben bemutatunk néhany kiilonbdz6 nehézségti feladatot, melyek megoldha-
tok a keretrendszer segitségével. A tandr szemszogébdl targyaljuk bizonyos feladatok egy-egy
megoldasi otletét is, a megoldas leirdsdban megjelend gondolatok és kddrészletek koziil a did-
koknak 4ltaldban csak annyit érdemes odaadni, amennyire sziikség van (vagyis szeretnénk, ha
a megoldasok minél nagyobb részben t6lilk szdrmaznédnak). A feladatokat felhaszndlé tanar a
koriilményeknek megfelelGen eldontheti, hogy mit és mennyit mond el a megoldds menetébdl.

Mivel egy-egy pixel szinét egy struktira tdrolja, illetve a képernydre rajzolas C++ fiiggvé-
nyek meghivasan keresztiil torténik, ezért a jelenlegi informatika tantervnek megfelelGen ezeket
a feladatokat leginkabb 11. osztdlyban, illetve az intenziv informatika tantervnek megfeleléen
mar 10. osztdlyban ajanlott alkalmazni, miutan a sziikséges nyelvi elemeket a didkok megis-
merték. A feladatok alkalmat adnak gy az 4ltaldnos gondolkodési képesség fejlesztésére, mint

a kordbban elsajatitott ismeretek felhaszndldsara (pl. struktirdk és karakterlancok alkalmazasa).

2.1. A példakéd kozelebbrol

Nézziik meg az el6z6 fejezetben futtatott példakdd render fiiggvényét (2.1. kodrészlet). Fi-
gyeljik meg, hogy a megjelend ablakban l4that6 ,,Hello, world!” szoveget kirajzold draw_text
fliggvényhivas mellett még négy darab pixelt is kirajzolunk az ablak négy sarkdnak megfeleld
sor- €s oszlopkoordinatdkra. Ezek szine piros, mert a Color struktira r, g és b adattagjainak eb-
ben a sorrendben a 255, 0, 0 értékeket adjuk (a szinkomponensek értéke egy-egy 0 és 255 kozotti
egész szam kell legyen). Ha a megjelend ablakrdl képernydképet készitiink, veszteségmentesen
lementjiik (példdul PNG formatumban), majd egy képszerkesztdvel ranagyitunk, akkor a cimsor

alatti rész négy sarkdban megfigyelhetd a négy piros pixel (1d. 2.1. dbra).

12

30
31
32
33
34
35
36
37
38

2. FEJEZET: GYAKORLATOK, FELADATOK

void render (int width, int height)

{
draw_pixel (0, 0, {255,0,0});
draw_pixel Cheight-1, 0, {255,0,03});
draw_pixel (0, width-1, {255,0,0});
draw_pixel Cheight-1, width-1, {255,0,0});
draw_text (40, 20, {0,0,0}, 20, "Hello, world!");
}

2.1. kédrészlet. A példakdd render(. . .) fiiggvénye

N A X

(a) bal fels6 sarok (b) jobb felsd sarok

(c) bal alsé sarok (d) jobb alsé sarok

2.1. dbra. Nagyitott képernydfelvételek a grafikus ablak sarkairdl

A keretrendszer altal nyujtott funkcionalitds jobb megértése érdekében elvégezhetjiik a ko-

vetkez6 gyakorlatokat:

1. Nyissuk meg a szinpalettat egy tetszdleges képszerkeszt6ben (pl. GIMP, MS Paint) és
keressiik meg, hogy honnan tudjuk adott szin piros, zold és kék komponenseinek értékét
leolvasni. Valasszunk egy szint €s szinezziik ki ezzel a programunkban a teljes héitteret.
Prébéljuk megadni a szinek egyes komponenseit hexadecimdlis konstansként is (példaul

255 helyett a OxFF literalt haszndlva).

2. Helyezziink el egy logfile << "render "<< width << "x'"<< height << endl; Kiirdst a

render fliggvény elejére, majd a program elinditdsa utdn végezziink el egy-egy atmé-

13

31
32
33
34
35
36
37
38
39
40

2. FEJEZET: GYAKORLATOK, FELADATOK

retezést. Code::Blocks-bdl valé futtatds esetén a projektkonyvtarban, ellenkez$ esetben
pedig az aktualis katalogusban létrejott-e egy logfile.txt nevi dllomdany, melyben nyomon
kovethetjiik, hogy hanyszor és milyen méretekkel volt meghivva a render fiiggvény. A
kifrdsban az endl fontos, mert dj sorra térés mellett még a kimeneti puffert is iiriti, igy

rogton az utasitas végrehajtasa utan a fajlba kertil az kiirt szoveg.

3. Helyezziink el megfelel6 kiirdsokat az egér- és billentyliesemények kezel6fiiggvényei-
ben is, majd a napl6fd;jl tartalma alapjan figyeljiik meg, hogy melyik fiiggvényt mikor és

milyen értékekkel hivja meg a keretrendszer.

2.2. Négyzetek rajzolasa

A kovetkez6 feladat, hogy rajzoljunk ki a grafikus ablakba egy sotétzold négyzetet, a lehetd
legnagyobb méretben és kozépre igazitva. A négyzet oldala nem lehet nagyobb sem az ablak
sz€lességénél, sem a magassaginal. Ha az ablak belseje nem pont négyzet alaku, akkor vagy a
négyzet két oldaldn, vagy pedig alatta és felette valamekkora részt iiresen kell hagyni.

Egy lehetséges megoldas taldlhaté az aldbbi kddrészletben, a kimenet két kiilonb6zd ablak-

méret esetén pedig a 2.2. dbran.

void render (int width, int height)

{
int side = min(width, height);
int margin_cols (width - side)/2;
int margin_rows (height - side)/2;

for (int i = 0; i < side; ++1i)
for (int j = 0; j < side; ++3j)
draw_pixel (margin_rows + i, margin_cols + j, { 0, 120, 0 });

2.2. kédrészlet. Zold négyzet kirajzoldsahoz hasznélt render fiiggvény

Ha ez sikeriilt, akkor a négyzetes matrixokban a f64tl6 és mellékatlo fogalmédnak atismétlé-

sére javasolhatjuk példdul a kovetkezdket:

1. Szinezziik ki a négyzet f64tl6 feletti és f6atlo alatti részét két kiilonbzd szinnel.

2. Az eldbbi két zondban még tegyiink kiilonbséget a mellékatlo feletti és alatti részek kozott

14

2. FEJEZET: GYAKORLATOK, FELADATOK

X 2 fexamples/square v oA X

Jexamples/square

2.2. dbra. Z6ld négyzetek

is, dllitsunk el6 a 2.3a. dbrahoz hasonl6 kimenetet. A f64tlon és mellékatlon levo pixelek

szine megegyezhet vagy a felettiik, vagy az alattuk taldlhat6 zéna szinével.

3. Szinezziik feketére a f64atl6 és mellékatlo vonalaihoz kozel all6 pixeleket a 2.3b. dbrdnak
megfelelden (a vastagsag lehet tetszéleges vagy felnagyitva megszamolhatjuk az dbrdn a

fekete pixeleket minden soron).

2 2

(a) Felosztas f6atlo és mellékatlé mentén (b) Atlévonalak

2.3. abra. Négyzetekkel kapcsolatos feladatok kimenetei

15

2. FEJEZET: GYAKORLATOK, FELADATOK

2.3. Rajzoljunk sakktablat

Ebben a feladatban egy fokkal tobb tervezésre lesz sziikség a rendelkezésre 4116 hely beosz-

tasdhoz. Egy sakktablat szeretnénk kirajzolni a 2.4. dbrdanak megfelelden.

X Jchessboard v oA X

2.4. abra. Sakktabla

Els6 1épésben megnézhetjiik, hogy legfeljebb mekkora lehet a négyzetiink. Az el6zd fel-
adatban szerepld két megkotésen kiviil (az oldalhossz nem lehet nagyobb a szélességnél és a
magassigndl) még azt is szeretnénk, ha az oldalhossz nyolc tobbszordse lenne, hogy mindegyik
kis négyzet ugyanakkora legyen. Miutdn kiszdmoltuk a sziikséges hosszisdgokat, egy vildgos
és egy sotét szint vdlasztva néhdny ciklus segitségével kirajzolhatjuk a pixeleket (egy lehetséges
megoldds a 2.3. kédrészletben).

Javasoljuk még a kovetkez feladatokat:

1. Altaldnositsuk a rajzoldst n x n méretii tabla esetére (ahol az n pozitiv egész szamot az

initialize fiiggvényen beliil egy f4jlbol olvassuk be).

2. Prébdljuk meg eltiintetni a maradékos osztds miatt megjelend vékony fehér csikokat
(a 2.4. dbran ezek a sakktdbla felett és alatt latszanak). Ezt megoldhatjuk példdul dgy,
hogy az osztdsi maradéknak megfeleld pixeleket az elsé vagy utolsé sor négyzeteinek
magassdgahoz adjuk hozzd, vagy elosztjuk azokat majdnem egyenlGen a négyzetek ko-

z0ott (persze nem jut majd mindegyiknek).

3. Oldjuk meg, hogy kattintdskor a vildgos és sotét szinek felcserélddjenek a tdblan

(djabb kattintaskor pedig visszadlljanak eredeti dllapotukba. Ehhez implementéljuk az

16

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

2. FEJEZET: GYAKORLATOK, FELADATOK

on_mouse_down eseménykezelt, mely egy globalis valtozéban szdmolja a kattintdsok sza-

mat (vagy nyilvantartja azok paritdsat) és true értéket térit vissza. Majd a render fiigg-

vényben a kattintdsok szamédnak megfelelden cseréljiik fel a szineket, ha sziikséges.

void render (int width, int height)

{

int side = min(width, height)/8;
int margin_cols = (width - 8*side)/2;
int margin_rows = (height - 8*side)/2;

Color light { 220, 180, 130 1};
Color dark { 90, 40, 0 };

for (int i = 0; i < 8; ++1)
for (int j = 0; j < 8; ++j) {
Color color = (i+j)%2 == 0 ? light : dark;
for (int row = 0; row < side; ++row)
for (int col = 0; col < side; ++col)
draw_pizxel (
margin_rows + i*side + row,
margin_cols + j*side + col,
color);

2.3. kédrészlet. Sakktdbla kirajzoldsdhoz haszndlt render fliggvény

2.4. Szinatmenetek

A kovetkezd6 feladattal szeretnénk az eddig leginkdbb csak konstans értékként hasznalt szi-

nek algoritmikus manipuldldsat gyakoroltatni.

Irjunk egy szinkeverd fiiggvényt, mely két szint és egy valds szamot kap paraméterként és

egy (kevert) szint térit vissza. A valés szam a [0, 1] intervallum eleme és azt szeretnénk, ha a

fiiggvény a két szint (1 — r) : r ardnyban keverné (példaul » = 0 esetén az elsd szint, r

esetén a masodik szint, » = 0.5 esetén a két szin szdmtani kozéparanyosat téritse vissza, r

1

1
3

esetén pedig azt a szint, mely a két szin %—dal és %—dal sulyozott szdmtani kozépardnyosa). A

szinekkel végzett miiveleteket komponensenként értelmezziik, tehat kiilon végezziik el a keve-

rést az egyes komponensekre. Egy lehetséges implementécidja a szinkeverd fliggvénynek a 2.4.

kodrészletben lathatd. A keverés komponensenként torténik €s az eredmény nyolc bites egésszé

valé kerekitését (pontosabban csonkoldsét) a beépitett tipuskonverzidra bizzuk.

17

0 N AN N R W N =

2. FEJEZET: GYAKORLATOK, FELADATOK

Color combine(Color

{

Color c;

c.r = cl.r * (1-
c.g = cl.g * (1-
c.b = cl.b * (1-

return c;

cl, Color c2, double ratio)

ratio) + c2.r * ratio;
ratio) + c2.g * ratio;
ratio) + c2.b * ratio;

2.4. kédrészlet. Szinkeverd fiiggvény

Ezt a kever6fiiggvényt felhaszndlva allitsunk el6 a 2.5. dbran 14thaté szindtmeneteket. Mind

a négy képernyofelvételen egy sarga ({255,255,50}) és egy piros ({230,30,30}) szin kozotti

atmenet lathato.

x Jexamplesigradienti caxl

(a) balrdl jobbra (b) fentrdl le

X Jexamplesigradient dist v oA x

(c) bal felsd saroktél mért tavolsag (d) kdzépponttdl mért tavolsag

2.5. abra. Szinatmenetek

Az elsd ablak esetén balrdl jobbra haladva szeretnénk egyik szinbdl a masikba dtmenni,

tehdt a keverési ardny meghatarozasdban csak az oszlopindex jatszik szerepet. A masodik ablak

esetén ugyanakkor fentr6l lefelé halad az dtmenet, ezért itt csak a sorindexnek van hatdsa az

18

2. FEJEZET: GYAKORLATOK, FELADATOK

s

ardnyra. A harmadik dtmenet el6dllitdsakor a pixelek bal felsd sarokt6l mért tadvolsdgdnak és
a lehetséges legnagyobb ilyen tdvolsdgnak (azaz a jobb alsé sarok tdvolsidgdnak) az ardnyat
hasznaltuk keverési ardnyként, mig a negyedik dtmenet esetén a kozépponttél mért tdvolsagot
aranyitjuk a lehetséges legnagyobbhoz (azaz valamelyik sarok kozépponttl mért tdvolsdgahoz).

A négy atmenet egy-egy lehetséges implementéicidja megtaldlhat6 a melléklet src/gradient-
Ir.cpp, src/gradient-updown.cpp, src/gradient-dist.cpp és src/gradient-circular.cpp dllomanyai-
ban.

A CSS'-ben megszokott szindtmenetekbdl inspirdlédva egy fokkal nehezebb feladatokat is
javasolhatunk. Egyik 6tlet, hogy implementdljuk az el6bb bemutatottakhoz hasonlé dtmeneteket
tobb mint két szinnel. Péld4dul hdrom szin esetén a balrdl jobbra halad6 dtmenet a legbaloldalibb
oszloptdl a kozépsdig dtmegy az elsd szinbdl a masodikba, a kozépsd oszloptdl a jobboldaliig
pedig a masodik szinbdl a harmadikba. A szinek szdmat, a szink6dokat és az dtmenet tipusat
megadhatjuk egy bemeneti fajlban. Mdésik nehezitési lehetdség, hogy a balrdl jobbra és fentrdl
lefelé halad6 dtmenetek altalanositdsaként allitsunk eld adott szogben elddlt linedris szinatme-

netet.

2.5. Ceruza

Az aldbbiakban szeretnénk a rajzoléprogramokban dltaldban ceruza néven ismert funkcio-
hoz hasonl¢ viselkedést elddllitani. Tehat amig a felhaszndlé lenyomva tartja a bal egérgombot,
az egér mozgasat kovetd vonal jelenjen meg a vdsznon.

Ezt megvaldsithatjuk a keretrendszer altal kezelt egéreseményekkel, de sziikséges lesz ta-
rolni az aktudlis képet, hiszen esetleges djrarajzoldsokkor mar nem fogjuk tudni az egér régebbi
pozicioit. Tehat vegyiink egy elég nagy (pl. 1920 x 1080-as vagy akar még nagyobb felbon-
tasnak megfeleld) kétdimenzids tombot, és ebben fessiik be a pixeleket valahanyszor az egér
ugy halad at egy pixelen, hogy a bal egérgomb le van nyomva (illetve akkor is befesthetjiik az
aktudlis pixelt, hogyha éppen most nyomddik le). A render fiiggvényben meg csak rajzoljuk ki
a grafikus ablakba a lementett kép azon részét, amelyik elfér benne (példdul a bal felsd saroktol
indulva). Az el6bbiek alapjan az els6 implementacionk a melléklet src/examples/pencil-1.cpp

alloményaban taldlhato és a 2.6a dbranak megfeleld viselkedést 14tjuk, ha megprébalunk rajzol-

ni valamit az egérrel.

1Cascading Style Sheets, https://www.w3.0org/TR/CSS/

19

https://www.w3.org/TR/CSS/

2. FEJEZET: GYAKORLATOK, FELADATOK

(a) Egy-egy pixel rajzoldsa (b) 3 x 3-as négyzetek rajzoldsa

2.6. dbra. Ceruza kezdeti implementacioi

Ez a vonal tdl vékony, igy alig lathatd, ezért probédljunk meg ne csak egy-egy pixelt elhe-
lyezni a képen az egéresemények sordn, hanem mondjuk egy-egy 3 x 3-as, vagy akdr tetszéleges
méretl négyzetet, melynek kozepe (vagy paros méret esetén egyik kdzépponti pixelje) az egér
pozicidja. Ennek implementacidja a melléklet src/examples/pencil-2.cpp dlloményéban taldlha-
td, egy rajz pedig a 2.6b 4bran.

Még mindig hagy kivanni val6t maga utdn a rajzoldprogramunk viselkedése, ugyanis az
egérrel leirt gorbe azon részein, ahol viszonylag gyorsan mozgattuk az egeret, szaggatott lett
a kirajzolt vonal. Ezt az okozza, hogy ilyen esetekben nem hivodik meg az on_move fliggvény
minden pixelre, amin az egér dthalad, ezek koziil csak néhanyat kapunk meg.

Ki kell taldljunk tehat valamilyen megoldést arra, hogy amennyiben az egérgomb nem lett
felengedve, de nem két egymas melletti koordinatapar érkezik be az on_move fiiggvény két egy-
madsutdni meghivasdba, akkor a két pont kozotti helyet valamilyen mddon toltsiik ki. Az els6
otlet, hogy egy egyenes szakasz mentén szinezziik be a pixeleket, viszont mivel ezek csak egész
koordinatdkra keriilnek, ezért egy kis kerekitésre is sziikség lesz.

Tegyiik fel példaul, hogy az elss hivdsban a (sorq, 0szlop,) = (0, 0) pozicidt, a masodikban
pedig a (sory, 0szlop,) = (3, 7) poziciét kapjuk meg az on_move fiiggvény paraméterein keresz-
tiill. Ha a szakasz fiigg6leges vagy vizszintes lenne, akkor egyértelm, hogy mely pixeleket kell
beszinezni. Jelen esetben viszont ez nem all fenn, dgyhogy irjuk fel a végpontokra illeszkedd

egyenes explicit egyenletét kifejezve példaul a sorindexet az oszlopindex segitségével:

sory — sory
sor = -o0szlop +

sori08zlops — sorqoszlopy
0szlops — oszlopy 0szlops — oszlopy '

20

2. FEJEZET: GYAKORLATOK, FELADATOK

Ha ebbe az egyenletbe rendre behelyettesitjiik az oszlop; és oszlop, kozotti egész szamokat,
akkor megkapjuk, hogy azon paraméterértékekre melyik sorindexet kellene valasztani, viszont
ez nem lesz mindig egész szam, ezért kénytelenek vagyunk kerekiteni (1d. 2.7. dbra). Ezt ugy
is felfoghatjuk, hogy azt a pixelt fogjuk beszinezni, amelynek a kézéppontja kozelebb van az
egyenesen taldlhat6 ponthoz (amennyiben a pixelek kézéppontjait tekintjiik a sik egész koordi-

natdjua pontjainak).

R e

2.7. ébra. Pixelek szinezése egy egyenes mentén

Ezen 6tlet megvaldsitdsa sordn tehat a didkok analitikus mértan ismereteiket is fel kell hasz-
naljak a cél eléréséhez. Egy lehetséges implementacié a melléklet src/examples/pencil-3.cpp
allomanyaban taldlhat6, azonban ennek viselkedése még mindig nem kielégit6. Figyeljiik meg,
hogy bér a kevésbé meredek vonalak folytonosnak latszanak, ha meredekebben probélunk raj-

zolni (lefelé vagy felfelé), még mindig bizonyos helyeken szaggatott lesz a vonal (1d. 2.8. dbra).

X 2 Jexamples/pencil-3 v oA X

2.8. abra. Egérpoziciok kozotti helyek kitoltése egyenes mentén

21

2. FEJEZET: GYAKORLATOK, FELADATOK

Lassunk egy példat arra, hogy ez miként torténhet meg. Tegyiik most fel, hogy az els6 hivas-
ban a (sory, oszlop;) = (0, 0) poziciét, a masodikban pedig a (sors, 0oszlop,) = (7, 3) poziciét
kapjuk meg az on_move fliggvény paraméterein keresztiil. Az el6z6 megkozelitést hasznalva
a 2.9. dbranak megfeleld pixeleket szinezné ki a kddunk, viszont latszik, hogy hézagok marad-
nak: nem minden 0 és 7 kozotti egész szam jelenik meg (kerekitett) sorindexként, az egyenes

ehhez til meredek.

T\
{aas

2.9. abra. Pixelek szinezése egy egyenes mentén

Ezen probléma elkeriilésére az egyik modszer, hogy ilyenkor forditva irjuk fel az egyenes
egyenletét, tehat az oszlopindexet fejezziik ki a sorindex fiiggvényében, majd minden sorinde-
xen végighaladva kerekités utdn megkapjuk, hogy ezen a soron melyik oszlopindexi pixelt kell
kifesteni (vagy esetleg tobb pixelt az adott pozicié koriil, 1asd a vastagsag targyalasat a feladat
elején). Az egyenlet alakja ekkor:

o0szlopy — 0szlopy n oszlopysory — 0szlopysory

oszlop = - sor ,
s0ry — sory sory — sory

és az egyenes meredekségének fiiggvényében vagy ezt, vagy az el6z6t haszndljuk majd. Ponto-
sabban, ha két egymds utdn megkapott pozicid esetén a sorindexek kiilonbsége nagyobb abszo-
lat értékl mint az oszlopindexek kiilonbsége, akkor ezt a felirdst (ilyenkor az egyenes meredek),

ellenkezd esetben pedig az el6z6t.

22

2. FEJEZET: GYAKORLATOK, FELADATOK

Ez a mddszer digital differential analyzer néven ismert (ldsd példdul [Godse €s Godse,
2007], 2.3.1. rész), egy lehetséges implementacidjat a melléklet src/examples/pencil-4.cpp allo-

madnya tartalmazza. Az aldbbiakban javasolunk még néhany feladatot:

1. Az ,R” billentyd lenyomdsara toroljiik a képerny6 tartalmat, az ,,17, ,,2”, stb. gombok
megnyomadsa esetén valtoztassuk az aktudlis vonalvastagsagot, a ,,P”, ,,2”, ,,K”, ,,F” bil-
lentylik lenyomaésa esetén pedig valtoztassuk az aktudlis szint (pirosra, zoldre, kékre, il-
letve feketére) és az ez utan kovetkezd vonalakat az igy kapott vastagsdggal és szinnel

rajzoljuk.

2. Rajzoljunk ki egy (megfeleld szind és méretli) pottydt az egér aktudlis pozicidjara (ez

nem része a képnek, csak egérgomb lenyomdsa esetén viljon majd azza).

3. A raszterezéshez (a kifestendd pixelek megallapitasahoz) a digital differential analyzer
helyett implementaljuk Bresenham algoritmusét (Id. [Bresenham, 1965] vagy [Godse és
Godse, 2007], 2.3.2. rész).

2.6. Szovegvezérelt rajzoloprogram

A vektorgrafikat haszndlo rajzolorendszerek egy része szoveges formatumban megadott be-
menettel dolgozik. Ennek egyik legelterjedtebb példdja az SVG (Scalable Vector Graphics)?
néven ismert fajlformatum. Jelen feladatban olyan program el6éllitasat tlizziik ki célul, ami egy
ennél sokkal egyszer(ibb formatumu szoveges bemenet alapjan allitja el6 a képet megfeleld
draw_pixel hivasok soran.

Minden kirajzolandé geometriai alakzat esetén adott annak tipusa, az elhelyezéshez sziiksé-

ges informdciok és a kitoltés szine. Tekintsiik példaul az alabbi harom alakzatot:

— téglalap: a megadashoz elég ha megadjuk a bal felsd és jobb alsé sarok koordinatait,

illetve a kitoltés szinét;

— kor(lap): a megaddsahoz sziikség van a kozéppont koordinataira, a sugdrra és a kitoltés

szinére;

— hdromszog(lap): ennek megadasakor leirjuk a csicsok koordinatdit €s a kitoltés szinét.

’https://www.w3.org/Graphics/SVG/

23

https://www.w3.org/Graphics/SVG/

AW N =

2. FEJEZET: GYAKORLATOK, FELADATOK

Az egyszerliség kedvéért az eldbb felsorolt adatokat szokozzel elvélasztott egész szamok
formdjdban felsorolhatjuk egy szoveges fajlban, példdul a 2.5. kédrészletnek megfelelden. Eb-
ben az esetben harom alakzatot szeretnénk kirajzolni: egy zold téglalapot, egy piros kort és egy

kék haromszoget.

3
rectangle 10 10 200 250 0 255 0
circle 200 500 80 255 0 0

triangle 150 150 400 120 430 500 0 0 255

2.5. kodrészlet. Rajzoloprogram bemenete

Amennyiben az ablakunk elég nagy ahhoz, hogy ezek elférjenek benne, akkor azt szeret-
nénk, ha ezen bemenet esetén a program futtatdsakor a 2.10. dbrdn lathat6é kimenet jelenne meg

az ablakban.

X ftextdraw v oA K

2.10. ébra. A kirajzolt alakzatok

A megval6sitas egyik mddja, hogy a render fiiggvény meghivisakor végigjarjuk az ablak
pixeleit, majd ha egy pixel valamelyik sikidom belsd tartomanyaban helyezkedik el, akkor an-
nak a szinére szinezziik ki (illetve ha tobb olyan is van, akkor ezek koziil az utolsénak a szinére,
igy elérjiik, hogy a késdbb kirajzolt alakzatok legyenek feliil az eredményben).

Ehhez a didkoknak sziiksége lesz a matematikabdl tanult analitikus mértan ismeretek egy

részére. Téglalap esetén konnyl a dontés, mert azok a pontok vannak a belsé tartomdnyban,

24

2. FEJEZET: GYAKORLATOK, FELADATOK

melyeknek a sor- és oszlopkoordindtdja is a bal fels6 illetve jobb alsé sarok sor- és oszlop-
koordinatdi ltal meghatdrozott intervallumokban taldlhat6. Kor esetén azon pontok vannak a
bels6 tartomanyban, melyek tdvolsdga a kdozépponttdl nem nagyobb, mint a sugar. Hiromszog
esetén pedig felirhatjuk az oldalegyenesek egyenleteit, majd megnézziik hogy a kérdéses pont
mindhdrom oldalegyenesnek ugyanazon az oldalan talalhat6-e, mint az egyeneseken nem sze-
repld csucs (teszteléskor sajatos esetként érdemes figyelmet forditani a fiiggbleges és vizszintes
oldalegyenesekre).

Az otlet egy lehetséges implementacidja a melléklet src/examples/textdraw-1.cpp alloma-

nyéban taldlhato.

Transzlacio

Az eddigiekben a képerny6n és a rajzon ugyanazt a koordindta-rendszert hasznéltuk, tehat
a képerny6 r-edik sordnak c-edik pixelje egyben a rajzolds sikjanak (r, ¢) koordinétdjd pontja,
a bal felsd saroktdl lefelé és jobbra szimolva. Ha azonban az ablakméret nem elég nagy, akkor
el6fordulhat, hogy a rajznak csak egy része latszik (a negativ tartomdnyok pedig egyaltalan
nem).

Erre azt a megoldast javasoljuk, hogy a rajz vdljon mozgathatév4, vagyis ha bal egérgombot
lenyomva tartva hizzuk az egeret, akkor a mutaté elmozduldsanak megfeleléen mozogjon a rajz
is. Ezt implementdlhatjuk ugy, hogy az on_move fiiggvény segitségével folyamatosan nyilvan-
tartjuk az egér kurzor legutébbi helyét és amennyiben a bal egérgomb le van nyomva, akkor a
legutdbbi és aktudlis hely kozotti elmozduldsnak megfelelden eltoljuk a képet, tehat a rajzolés
és a képernydofeliilet koordindta-rendszere el lesz tolva egymashoz képest.

Az aktudlis eltolds nyilvantartdsara elég két valtozot haszndlni. Legyen tehdt 7., €s trey
a rajz azon sor és oszlopkoordindtdja, melyet a képerny6 (0, 0) pozicidjara fogunk rajzolni. Ez
azt jelenti, hogy amikor a képerny® (i, j) koordinétaju pixelének akarjuk a szinét megallapitani,
akkor a rajzoldsi sikban az (7 + tr,4y, J + 74) koordindtdji pontot vizsgéljuk (azaz ellendriz-
ziik, hogy benne van-e a sikidomok valamelyikében), igy tetszdlegesen eltolt dllapotot tudunk
megjeleniteni a render fiiggvényben.

Amennyiben az egérrel mozgatjuk a képet és azt vessziik észre, hogy az egérmutaté az

25

2. FEJEZET: GYAKORLATOK, FELADATOK

(r1, c1) pozicidrdl az (rq, co) poziciéra mozdult el, akkor ¢4, és tr., értéke a

trrow — trrow - (TQ - Tl), illetve

trcol — trcol - (02 - Cl)

szabdlyoknak megfeleléen kell valtozzon. Péld4ul ha az egér lefelé €s jobbra mozdul el, akkor
a tr0p €s trq, koordindtdknak egyarant csokkenniiik kell, mert a rajznak mér a kisebb sor és
oszlop-koordinatdju részeit is latni szeretnénk. Ugyanakkor a rajz elmozduldsdnak a mértéke
igy egyenld az egér elmozduldsdnak mértékével, ezért a felhaszndlénak tgy tlinik majd, hogy
az a pont, amit ,,megfogott” az egérrel, helyben marad az egérmutato alatt.

Ezen otlet implementicidja nem kellene nehézséget okozzon, egy lehetséges véltozata a
melléklet src/examples/textdraw-2.cpp dllomanyaban megtaldlhatd. Sajnos a mozgatds nem tul
hatékony, mert folyton tdjra kell szdmolni az 6sszes képpontot (és egyes rendszereken érezhetd-
en akadozva koveti a rajz mozgésa az egérmutatot).

Javasoljuk a kovetkez$ gyorsitasi Otletet: minden alakzat esetén mentsiink le egy legkisebb
és legnagyobb sor €s oszlopindexet, melyeken kiviil es6 pontok biztosan nem részei az alakzat
belsd tartomdnydnak (példaul haromszog esetén a csicsok sor-koordindtdjanak minimumadndl
kisebb sor-koordinétdju pont biztosan nem része a haromszognek stb.). Ezen informécidkat eld-
re kiszdmolva minden alakzat esetén kapunk egy gyors elutasitsi feltételt a képernyd pontjai-
nak nagy részére (tehat a bonyolultabb és itt-ott lebegépontos szamokkal végzett miiveleteket
igényl6 mértani szamitdsokat nem kell majd minden pontra végrehajtani). Az otlet egy imple-
mentécidja a melléklet src/examples/textdraw-3.cpp forrastajljaban talalhato és érezhet6en javit
arajzolds hatékonysagdn (vagyis az el6z8 implementdciondl lényegesen gyorsabban koveti itt a
rajz az egérmutatot).

Egyéb optimalizicids oOtletek is felmeriilhetnek, példdul nem kellene feltétleniil djraszdmol-
ni a képpontok szinét azokban a zondkban, melyek eltolas eldtt és utan is részei a megjelenitett
képnek, ezek eltolt megjelenitéséhez fel lehetne haszndlni az el6z6 képet (amennyiben el6zdleg

elmentettiik azt).

Tovabbi feladatok

1. Implementaljuk az egyenes szakasz (adottak a végpontok, vastagsdg és szin), a parale-

logramma (adott hdrom szomszédos csucsa, vagy egy csucspontot és két vektor), illetve

26

2. FEJEZET: GYAKORLATOK, FELADATOK

a konvex sokszog (adottak a csticspontok) primitiveket.

2. A grafikus primitivek esetén adjunk lehet6séget adott vastagsagu és adott szinnel szinezett

keret 1étrehozaséra (példaul fekete korvonalon beliil pirosra szinezett korlap).

3. A bemenet formatumdit tegyiikk konnyebben olvashatéva. Példaul a rectangle
10 10 200 250 0 255 O bemenet helyett fogadjuk el a bemeneten a rectangle
(10,10) (200,250) rgb(0,255,0) szoveget és dolgozzuk fel karaktersorként a C++-
ban rendelkezésre all6 eszkozokkel. A fehér karakterek (sz6koz, tabulator) szamanak ne
legyen jelent6sége. A szin megaddsandl fogadjunk el hexadecimalis konstanst is a CSS-
ben megszokott formatumnak megfeleléen, példaul rgb(0,255,0) helyett #00FF00
alakban.

4. Készitsiink egy circle2 nevii alakzattipust, mely olyan korlapot rajzol, amelynek kor-

vonala dthalad hdrom megadott nem kollinedris ponton.

5. A 2.10. abrén lathat6 1é€pcsdsen recézett éleket szeretnénk elkeriilni. Ezt a jelenséget alia-
sing-nek, az elkeriilésére hasznalt modszereket pedig anti-aliasing-nek nevezi a szakiro-
dalom (l4sd példaul [Akenine-Moller et al., 2018], 5.4. rész). Implementaljunk egyszert
felbontasdupldzasra épiilé supersampling tipusu anti-aliasing algoritmust: dupldzzuk meg
az ismert pontok sor és oszlopindexeit és képzeljiik el, hogy a képerny6 szélessége €s
magassaga is kétszer akkora, mint amit megkaptunk. Ekkor tulajdonképpen kétszer ak-
kora felbontdsban tudjuk kirajzolni a képet (sorok €s oszlopok szempontjabdl egyarént).
Ezen a nagy képen négy-négy pixel szinét atlagoljuk (2 x 2-es négyzeteket) és megka-
punk egy, az eredeti felbontdsnak megfeleld képet, de mar kevésbé éles szindtmenetekkel.
Egy lehetséges (memoria szempontjdbol hatékony) implementécidt tartalmaz a melléklet

src/examples/textdraw-4.cpp dllomdanya, a kimenet valtozasa pedig a 2.11. abran lathato.

(a) anti-aliasing nélkiil (b) kétszeres felbontassal

2.11. 4bra. A fentebbi 2.10. dbra kék haromszogének jobb als6 sarka (nagyitva)

27

3. fejezet

Fliggvényabrazolo program készitése

Ebben a fejezetben egy fiiggvénydbrdzold program elkészitését tlizziik ki célul. A bemenet
az dbrazolni kivant egyvaltozos valos szamfiiggvények megfeleltetési szabélyait megadé szove-
ges allomany (egy példa a 3.1. kédrészletben). A kimeneten pedig egy, a 3.1. dbran lathatéhoz

hasonl6 képet szeretnénk el6allitani, melyet késébb egérrel mozgathatéva (és akar nagyithato-

va) is tesziink majd.

1| 2*sin(x)
2] -2%x + 1
31 1.2

3.1. kédrészlet. Fliggvényabrazold program bemenete

X 2 Iplotter-5 v oA X

(-4.908722, 2.099391)

3.1. dbra. A fiiggvényadbrazol6 program egy kimenete

28

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

Mivel a funkcionalitdsok szdma és bonyolultsdga itt jelentGsen nagyobb anndl, mint ami-
vel az eddigi feladatok sordn taldlkoztunk, ezért egyrészt a célk6zonség mar inkdbb csak az
érdekl6do, atlagndl jobb programozoéi készséggel rendelkezd didkokra szikiil, masrészt pedig
a fiiggvényabrazol6 program implementaciéjat leginkabb projekt jelleggel ajanljuk (az osztaly-
ban feladott kotelezé megoldando feladat helyett).

Els6 1épésben figyeljiik meg, hogy a bemeneten megadott fliggvényeket szamos pontban ki
akarjuk majd értékelni. Tehat sziikség lesz egy programrészre, mely a megadott karaktersorok
alapjan (illetve azokat tetszSleges adatszerkezetté alakitva) képes lesz a felhaszndlé 4ltal beirt
fliggvények tetszoleges argumentumhoz tartoz6 fliggvényértékét meghatirozni.

Amint ki tudjuk értékelni a fiiggvényeket el kell majd donteni, hogy milyen pixeleket kell
a képerny6n beszinezni ahhoz, hogy a matematika 6rdkon torténd fiiggvényabrazoldskor meg-
szokott konvencidknak megfeleld képet allitsunk eld (példdul szeretnénk, hogy az dsszes fiigg-
vényt ugyanabban a koordindta-rendszerben legyen abrazolva, lathatdak legyenek a koordinata-
tengelyek, az egységnek ugyanakkora hossz feleljen meg ezeken).

Végiil annak érdekében, hogy a program minél hasznosabb legyen a felhaszndl6i szamara,
szeretnénk elérni, hogy egérmiiveletekkel tetszblegesen mozgathat6 és nagyithat6 legyen a gra-
fikus kép, vagyis a felhaszndl6 ennek barmely részét meg tudja vizsgélni akar nagy pontossdggal

is (megfelelden ranagyitva arra részre, amiben érdekelt).

3.1. Megfeleltetési szabalyok Kkiértékelése

A szoveges adatok értelmezése, beleértve akar az aritmetikai kifejezések kiértékelését is
nem idegen a programozoi versenyeken részt vevd didkok szdmdra. Sziikség van rd példaul az
alabbi feladatok megolddsahoz (a két infoarena.ro-n megtaldlhaté feladat leirdsa romén nyelvd,

a tobbi angol):

https://codeforces.com/problemset/problem/188/H,

— https://infoarena.ro/problema/dir,

https://infoarena.ro/problema/evaluare,

https://codeforces.com/problemset/problem/778/B,
— https://codeforces.com/problemset/problem/7/E

29

https://codeforces.com/problemset/problem/188/H
https://infoarena.ro/problema/dir
https://infoarena.ro/problema/evaluare
https://codeforces.com/problemset/problem/778/B
https://codeforces.com/problemset/problem/7/E

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

Esetiinkben egy-egy fiiggvény megfeleltetési szabalya olyan kifejezés lesz, melyben a sza-
mok, a négy alapmivelet €s a csoportositast szolgald zaréjelek mellett még megjelenhet az x
valtoz6szimbdlum, mely a fiiggvény argumentumaét jelenti. Szeretnénk tovabba néhany ismert
fiiggvényt is elérhet6vé tenni a felhaszndloknak (pl. sin(x), \/x, stb.).

Els6 1épésben tehdt az lenne a cél, hogy készitsiink egy programot, amely ilyen kifejezé-
seket képes kiértékelni. Példdul minden beolvasott kifejezés esetén irjuk ki a képernydre az
altaluk megadott fiiggvény -2, -1, 0, 1, 2 valés argumentumokhoz rendelt fiiggvényértékét (mar
amennyiben értelmezett ezekben az argumentumértékekben, ellenkez6 esetben pedig példaul a
NAN értéket).

A nyelvi elemzés (parsing) megvaldsitdsara a szakirodalomban tobb megkozelités megjele-
nik (1asd példaul [Aho et al., 2007] 4. fejezetét). Jelenlegi feladatunkhoz egy rekurziv leszallasra
épiild elemzb megirdsat javasoljuk, tobbnyire azért, mert implementdlhat6 indirekt rekurzi6 se-
gitségével néhany fiiggvény kozott, €s az implementicidé megértéséhez nincs sziikség a formalis
nyelvek elméletéhez kapcsolddé hattérismeretekre.

Amennyiben azt szeretnénk, hogy a didkok maguk alljanak el6 a teljes implementacidval,
ahhoz j6 eszkoz akar a fentebb emlitett versenyfeladatok végigolddsa, akér egy specifikusan
rekurziv leszélldssal foglalkoz6 anyag tanulmanyozasa (pl. [Clarke, 1986] vagy [Stroustrup,
2013] 10.2. rész, illetve mds online elérhetd anyagok és oktatovidedk). Azt is megtehetjiik, hogy
odaadunk a didkoknak egy részleges implementaciét (példaul olyat, amiben csak az 6sszeadas,
szorzds €s részkifejezések zardjelezése timogatott), majd annak bdvitése lesz a feladatuk.

A mellékletben megtaldlhatd src/examples/plotter-O.cpp dllomédny egy lehetséges imple-
menticiét add olyan elemz6re, mely a négy alapmiiveletet, a zaréjelezést €s a szinusz fiiggvényt
ismeri. A rekurziv leszallds modszerével egy kifejezésfat épitiink, majd ezt bejarva hatarozzuk
meg a fliggvényértéket az egyes argumentumok esetén. Néhany alap szintl hiba is kezelésre
kertil.

Az aldbbi nyelvtannak megfelel6en minden nemtermindlis szimbdlumot egy-egy fliggvény

kezel (a sz0k6zok nem Kkotelezdek):

30

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

expr: term [+|—] term [+|—] ... [+]|—] term
term : token [x|/] token [x|/] ... [x|/] token
token :

egy valos szam

T

(expr)
sin(expr)

Ennek megfelelGen az elemzést a parse_expr, parse_term és parse_token fliggvények vég-
zik, menet kozben pedig egy kifejezésfat épitiink (mindegyik fliggvény visszatériti a részkifeje-
zésének megfeleld részfa gyokércsomdpontjdnak cimét, vagy egy hiba tipusti csomdpont cimét
megfeleld tizenettel). Az evaluate_expression fliggvény pedig az elkésziilt fat bejarva egy-egy
valés o argumentumra ki tudja értékelni a kifejezést.

Amennyiben a gyokeres fék, illetve azok bejardsanak fogalma még nem ismert, elkeriilhet-
jik ezeket a forditott lengyel forma bevezetésével €s a shunting yard algoritmus hasznélataval
(1d. [Norvell, 1999]).

A 3.2. dbran lathat6 az elemzd program egy kimenetének részlete (kiirtuk a beolvasott ki-
fejezéseket, majd azok értékét az x € {—2,—1,0, 1,2} pontokban). A kiirdshoz, vdlasztottunk
néhdny kiilonboz6 szint, hogy késdbb a megfeleld fiiggvénygorbék is ilyen szintiek legyenek
(ha tul sok fiiggvény van megadva, akkor egy 1d6 utan ujra felhasznaljuk a szineket).

Az elemzd és a kiértékelés funkcionalitdsat szamos irdnyba bdvithetjiik. Javasoljuk a kovet-

kez6 feladatokat:

1. A sin fiiggvény mellett implementaljuk még a cos, tg, ctg, arcsin, arccos, arctg, arcctg,
In, sqrt, exp fiiggvényeket. Kiértékeléskor az értelmezési tartomanyon kiviil es6é argu-

mentumokra téritsiink vissza NAN értéket.

2. Adjunk hozzd hatvanyozast (példaul az x*3 kifejezés jelentse x-nek a harmadik hatva-
nyéat). Figyeljiink oda a miiveletek sorrendjére (a hatvanyozds bevezetése tulajdonképpen
Ujabb fiiggvény bevezetését igényli, hasonldan, mint az osszeadds €s szorzds viszonyanak

esetében).
3. A kerek zarojelpar mellett (mely a csoportositdst jelenti), vezessiik be a szogletes és kap-

31

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

N A Jplotter-0 oo X

flx) = 2*sin{x) -1.818595 -1.682942 0.000000) 1.682942 1.818595

fix)=1/x -0.500000 -1.000000 nan 1.000000 0. 500000
flx)={3+2 Error: missing "J".

flx)=5+ Error: unexpected end of string.

3.2. abra. Az elemzd kimenete

csos zdrdjelpéarokat, melyek az egészrészt és tortrészt szdmitjadk majd ki, illetve a fliggdle-
ges vonalakat, melyek az abszolit értéket. Példdul [x] az = egészrésze, {22} a 2x tortrésze

és [sin(x)| a sin(x) abszolut értéke.

3.2. Koordinata-rendszer és fiiggvénygorbék

A fiiggvények megfeleltetési szabdlyainak értelmezése utdn szeretnénk kirajzolni a
koordinata-tengelyeket ugy, hogy azok nagyjabdl az ablak vizszintes és fiiggbleges szimmet-
riatengelyei legyenek (azért csak nagyjabdl, mert paros szélesség vagy magassag esetén nem
tudunk egy pontosan kozéps6 sor és oszlopindexet meghatdrozni). A render fiiggvénybe be-
érkezd width és height paramétereken keresztiil megkapjuk az aktudlis ablak szélességét és

e

magassagat, ennek megfelelen legyen az Ox tengely a L indexd soron, az Oy tengely

pedig a L%‘MJ indexi oszlopon (ezen sort €s oszlopot feketére festjiik). Tovabba szeretnénk
még egy sziirke négyzetracsot, ahol a rdcspontok az egész koordinatdju pontok. Ehhez meg
kell tudjuk mondani, hogy milyen oszlopindexekre keriilnek az egész x koordinatdk, és milyen
sorindexekre keriilnek az egész y koordinatak.

Epitsiink fel tehdt egy koordindta-transzforméciét a fiiggvényébrazolds koordinata-

rendszere illetve a pixelek kirajzoldsdnak koordinata-rendszere kozott. A fiiggvénydbrazolas

height

koordinata-rendszerében az origd az ablak kozepe (pontosabban a _ 5

| sorindexd és | width |

oszlopindex pixel), az Ox tengely vizszintes és jobb oldalra haladva nd, az Oy tengely pedig

32

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

fliggbleges és felfelé haladva n6. Az pixelek megjelenitésének koordindta-rendszerében pedig
az origd a bal fels6 sarok, innen lefelé ndnek a sorindexek (amik rdadasul egész szdmok), jobbra
haladva pedig az oszlopindexek.

Szabadon megvalaszthatjuk, hogy egy pixelnyi tdvolsdg mekkora tavolsdgnak felel meg a
valos szamsikon. Tegyiik fel példaul, hogy ezt ugy akarjuk megvélasztani, hogy az ablak teljes
sz€lessége x_range egységnyi tavolsidgnak feleljen meg az Ox tengelyen (x_range-et meg-
valaszthatjuk mondjuk 10-nek, de az altalanossag kedvéért szimbolikus alakban hasznaljuk).

Ekkor width pixelnyi tdvolsag megfelel x_range darab egységnek a vizszintes tengelyen, ezért

Trange \esz és forditva, egy egységnek —24th darab pixel felel meg.

egy pixelnyi tdvolsag =-—=1 z_range

Ekkor adott ¢ oszlopindex esetén az = koordinéta az

v (o LwidthJ xr_range
N 2 width

Osszefliggéssel, illetve adott x koordinata esetén a neki megfeleld c oszlopindex a

[e e

7 2z z

Osszefliggéssel adhaté meg. Ez utobbi persze csak egy kozelitd érték, mert kénytelenek vagyunk
egész szamot kihozni oszlopindexnek, viszont az ebbdl szarmazé hibat elhanyagolhaténak te-
kintjiik. S6t, kerekités helyett alsé egész részt haszndlunk az implementacio egyszerlisége miatt
(ekkor ugyanis nem kell round fiiggvényt hivni, elég ha egy egész tipusi valtozéba mentjiik a
kiszdmolt lebegbpontos értéket).

Hasonléan megallapithatjuk az y koordindta és az r sorindex kozotti osszefliggéseket, csak

arra kell vigydzni, hogy az y koordindta felfelé haladva nd, a sorindex pedig lefelé. Ennek

megfelelden
LheightJ r_range
y=)=
2 width
illetve
{height J L width J
r= — |y ————|.
2 r_range
Figyeljiik meg, hogy ugyancsak az “==52 és zﬁfff;e valtészamokat hasznéltuk mert azt sze-

retnénk, ha az egységnyi tdvolsdg ugyanakkora lenne mindkét tengelyen (tehat tulajdonképen

megszabtuk, hogy a képernyd szélessége x_range tavolsagot fedjen le, a magassaga pedig a

33

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

képardnynak megfelel6en ennél nagyobb vagy kisebb tavolsagot fed le y irdnyban).

Ezzel megvan az eszkoztirunk ahhoz, hogy a négyzetracsot is kirajzoljuk. A koordi-
natatranszformdacidk tovabbi ellenbrzése céljabol még jelenitsiik meg azokat a koordinaté-
kat is, melyek az egér aktudlis pozicidjanak felelnek meg a fiiggvényabrazolds koordinata-
rendszerében, a 3.3. dbrdhoz hasonlé kimenetet elddllitva (természetesen az egér pozicidjat
aktualizalni kell minden mozgdasi esemény sordn). Egy lehetséges implementicié a melléklet
src/examples/plotter-1.cpp éllomanydban taldlhat6. Az emlitett elemek mellett még kirajzol-
tuk a négyzetracs egyeneseinek megfeleld koordinatakat, illetve meghagytuk az el6z6 részben

targyalt elemz6t €s a fiiggvénykifejezések kiirdsat (ezek ugyanis részei maradnak a végtermék-

nek).

| » ./plotter-1 v X

fix) = 2%sinfx)

fix)=1.2

(1.485588, 0.343681)

3.3. dbra. Koordinata-tengelyek és egér pozicidja

Ha ezzel megvagyunk, elkezdhetjiik magat a fiiggvénydbrazolast. Egy viszonylag termé-
szetesnek tind otlet a kovetkezd: az f fiiggvény dbrazoldasdhoz szdmoljuk ki rendre az egyes
oszlopindexeknek megfeleld x koordinatét, a kifejezéskiértékeld fiiggvénnyel szamoljuk ki az
ennek megfelelS f(x) fuggvényértéket, majd keressiik meg, hogy mely sorindex felel meg en-
nek (mar amennyiben az a lathato részben taldlhato) €s fessiik be a megfeleld pixelt a fliggvény
szinére. Ezen otlet implementdcidjat tartalmazza a melléklet src/examples/plotter-2.cpp édlloma-

nya, az eredmény viszont kordntsem kielégit6 (1d. 3.4. dbra).

A probléma hasonld, mint a ceruza eszkozt implementalé feladat esetében az el6z6 fejezet-

34

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

X Iplotter-2 & o | . -

(0.211840, 0.763651)

(a) teljes kimenet (b) egy felnagyitott rész

3.4. dbra. Els6 probdlkozés a fiiggvények dbrazoldsara

ben. Bar egymads melletti oszlopoknak megfeleld = koordindtakban értékeljiik ki a fiiggvénye-
ket, el6fordulhat, hogy a fiiggvényértékek kiilonbsége akkora, hogy nem egymdsutédni sorinde-
xeket kapunk, hanem hézagok maradnak. Egy lehetséges megoldds az el6z6 fejezetben targyalt
digital differential analyzer algoritmus implementaldsa, viszont javasolunk itt egy masik méd-
szert, mellyel valamivel simdbbnak tind kimenetet tudunk eld4dllitani (anélkiil, hogy bonyolult
anti-aliasing algoritmusok implementalasdban gondolkodnank).

Tegyiik fel, hogy a j index{i oszlop ¢ index(sordba kell egy pixelt kirajzoljunk, a j + 1
indexd oszlopban pedig mér az ¢ + k indexd sorba esik a befestendd képpont (azok az esetek
zavarnak, amelyekben k& > 2). Eljarhatunk dgy, hogy a j és 7 + 1 index{ oszlopokon egyarant
befestjiik az 7,7 + 1, ..., 7 + k sorokon levé pixelek mindegyikét, de a 7 indexii oszlopon egyre
csokkend, a 7 + 1 indexl oszlopon pedig egyre novekvé intenzitdssal. Tehat a fliggvényérték-
nek megfeleld képpont lesz a legerSsebb szinti mindkét oszlop esetén, de elérjiik azt is, hogy a
sorindexek kozotti &tmenet fokozatosan torténjen meg (ne legyenek ugrasok). Persze ez csak a
valéban folytonos fiiggvények dbrdzoldsakor jo stratégia, de ett6] most eltekintiink (vagyis felté-
telezziik, hogy folytonos fiiggvényekkel dolgozunk, csak az értelmezési tartomanyon kiviil esd
argumentumok esetét vizsgaljuk). Az otlet implementaciojat a melléklet src/examples/plotter-
3.cpp dlloménya tartalmazza, az eredményt pedig a 3.5. dbra szemlélteti.

Tovabbi feladat lehetne, hogy a négyzetracs beosztdsait ne mindig egységenként vegyiik fel,

hanem igazodjunk az ablak méretéhez, hogy a sziirke vonalak ne legyenek se tul siir(in, se tul

ritkan. A két racsvonal kozotti tavolsdgot bedllithatjuk példaul kettének a megfeleld hatvanyéra

35

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

(a) teljes kimenet (b) egy felnagyitott rész

3.5. abra. Folytonos fiiggvénygorbék elballitasa

(tehat egy, kettd, négy stb. egységre, vagy mdsik irdnyban fél, negyed stb. egységre annak meg-
feleléen, hogy melyik esetén van nem tdl nagy és nem tdl kicsi tdvolsdg két racsvonal kozott).

Ez kiilondsen hasznos lesz majd a nagyitds implementaldsa utan.

3.3. Geometriai transzformaciok

Hasznosabba tenné a fiiggvényabrazol6 programot, ha a fiiggvények grafikus képének nem
mindig ugyanazt a tartomanyat mutatndnk. Ebben a részben transzlaciot és nagyitist implemen-
tdlunk, hogy a felhaszndl6 a megfeleld egérmiiveletekkel el tudja mozgatni a grafikus képet,
illetve ra tudjon nagyitani annak egy-egy részére.

Az eddigiekben a pixelek kirajzoldsanak koordinata-rendszere mellett haszndltunk egy 2Oy
ortonormalt koordinata-rendszert, melyet a fliggvényabrazolas koordinata-rendszerének nevez-
tilnk és amelynek kozéppontja az ablak kozepe, illetve benne az egységhossz akkora, hogy az
ablak teljes szélessége x_range egység hosszu legyen.

Ezittal a fiiggvények dbrazoldsat attessziik egy masik, 2’O’y’ koordinata-rendszerbe, mely
az alkalmazott transzformdcidknak megfelelen viszonyul majd az xOy koordinata-rendszerhez

(hasonl6 megoldast mar lattunk az el6z6 fejezetben, de ott a pixelek kirajzoldsanak koordinata-

rendszeréhez képest volt egy eltoldsunk).

36

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

Transzlacio

Kezeljiik el6szor az eltoldst. Jelolte tr,, és tr, az 2’0’y koordinata-rendszer O’ kezd&pont-

janak koordinatdit az xOy koordinata-rendszerben. Ekkor érvényesek az

¥ =x—tr, ' x=a +tr,
, illetve

Yy =y—try y=1y +tr,

Osszefiiggések. Ez azt jelenti, hogy ha a grafikus ablak ¢ oszlopindexe az = koordindtanak felel
meg az xOy koordinata-rendszerben, akkor a fliggvényt nem az x argumentumban értékeljiik
ki, hanem az annak megfelel6 ' argumentumban. Tovdbbd az iy = f(2') fiiggvényértékhez
tarsitott y koordinatdnak megfelelen tudjuk majd a szinezni kivant pixel sorindexét meghata-
rozni (1d. 3.6. dbra). A szinezni kivant pont (x, y) koordindtdibdl az oszlop- és sorindexre valé

atszdmoldst mar az el6bbiekben elvégeztiik.

/

Y

y' = sin(a’) y=1vy +1tr, 3

3.6. dbra. Az f(z) = sin(z) fuggvény grafikus képe eltolva (tr, = —3, tr, = 2) és a két
koordindta-rendszer

37

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

Természetesen a grafikus ablakban csak az 2’O’y’ koordinata-rendszert és az ennek megfe-
lel6 négyzetracsot mutatjuk majd a felhasznédlonak, hiszen ennek van informécidértéke a fiigg-
vényabrazolds szempontjabol.

Az implementaciéhoz még hozza tartozik, hogy az egérmozgasnak megfelelden valtoztas-
suk tr, és tr, értékét (feltéve, hogy a bal egérgomb le van nyomva, azaz a felhasznal6 mozgatni
akarja az abrat). Ha példdul az egér a mozgds sordn d, sorral keriilt lejjebb és d. oszloppal

jobbra az el6z6 pozicidjahoz képest, akkor a

x_range
try < try, +d, - ————,
+ width
illetve
x_range
tr, <~ tr, —d, ———
Ty My width

atalakitdsokat kell elvégezziik (tehdt az egér elmozduldsat dtalakitjuk az zOy koordinéta-
rendszerben megfeleld elmozdulassa, ezzel azt az érzést keltjiik, hogy az a pont, amin dllva
a felhaszndl6 lenyomta az egérgombot, végig az egérmutatd alatt marad, egyiitt mozog vele).
Amennyiben az egér felfelé €s/vagy balra mozgott, akkor a d,. és d. értékek koziil valamelyik
vagy mindkettd negativ lesz.

A koordinétatranszformécidkat egybevonva felirhatunk megfeleltetéseket egyenesen az
'Oy’ és a pixelek rajzoldsanak koordindta-rendszere kozott (ahol r-rel jeldljiikk a sorindexet,

c-vel az oszlopindexet). Egyrészt mar tudjuk, hogy

B B sz’dthJ r_range
A 2 width © €

{widthJ n Lx width J’

2 ' r_range
Lh@ightJ r_range Lh@ightJ { width J
Yy = A .) r= - ’ :
2 width 2 xr_range

Amennyiben ezekben attériink az z’ és y' koordindtakra (a tr, és tr, eltoldsnak megfelelGen),

azt kapjuk, hogy:
- (e {widthJ z_range . LwidthJ n {(x’ ir) width J
a 2 width v 2 7 x_rangel’

height r_range height width

/ /

= — =y, __L J_L 4t —J
Y (L 2 J T) width v : 2 (' + i) xT_range

Ezeknek megfelelden tulajdonképpen mdr nincs is sziikség az xOy-beli koordinatdkra az imp-

38

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

lementaciéban.

A transzlacioval kiegészitett implementdcié megtaldlhatd a melléklet src/examples/plotter-
4.cpp dllomanydban. Az emlitett elemek mellet persze még a négyzetracson is alkalmazni kell
a megfeleld eltolast, illetve az egér aktudlis pozicidjanak koordindtait is az 2’O’y’ koordinata-

rendszernek megfelelden kell kiirni.

Nagyitas

Szeretnénk olyan nagyitast implementdlni, mely az egér aktudlis pozicidjat is figyelembe
veszi (tehat az egér alatt taldlhaté pont maradjon helyben, de az dbra n6jon meg minden al-
kalommal, amikor példdul gorgetiink egyet felfelé, illetve legyen kisebb lefelé gorgetéskor).
Ez pont az a viselkedés, ami képszerkesztOk vagy térképszoftverek esetében a felhaszndloknak
megszokott.

Azt szeretnénk tehat, hogy az x_range adott ardnyban n6jon vagy csokkenjen gorgetéskor
(példdul minden on_scroll fiiggvényhivds esetében 5%-kal vdltozzon a delta paraméter els-
jelének megfeleléen), de az egér alatti képpont maradjon helyben. Viszont azt, hogy hova és
mekkordra rajzoljuk a grafikus képeket €s a négyzetracsot, jelenleg harom allapotparaméter jel-
lemzi: x_range, tr, és tr,.

Tegyiik fel, hogy ezen paraméterek jelenlegi értékei x_range, tri és trél), a nagyitas

(2) (2)

utdni értékek pedig z_range®, try”’ és try,”, melyek koziil z_range®

-r6l mar tudjuk, hogy
milyen értéke kell legyen (az el6bbi gondolatmenetnek megfeleléen). A feladatunk tehét, hogy

;(52)—nek és trg(,z)—nek, amelyek mellett az éppen az egér alatt

megtaldljuk azokat az ért€keket tr
levd pont helyben marad a képernydn.

Ha az egér sor- és oszlopindexe jelenleg m,. és m,., akkor 2’O’y’-ben a neki megfeleld pont

koordinatai 0
width x_range
o= m,— — —trlV 3.1
m (m { 2 D width G1)
illetve "
height r_range 1)
,— —m, | =/ — ¢y, 3.2
My (L 2 J m) width "y (3-2)

Azt szeretnénk, ha nagyitds utan is a sik (m,/, m,/) pontja az (m., m,) pixelkoordindtdkra ke-

39

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

riilne, vagyis teljesiilne, hogy

width z_range®
o= me— — —tr? 3.3
" (m { 2 J) width ® 3-3)
illetve .
height xr_range
, — —m, | = @, 3.4
My (L 2 | -m) width Y G

Ekkor a 3.1 és 3.3 Osszefiiggésekbol

width z_rangeV) (1) width z_range® @
mc—{ J . - —tir,’ = mc—{ J . - —1ir,”,
2 width 2 width

ahonnan

dth z_range® — x_range™)
@ — () C_V‘” J 1= = .
oo = Wal AT 2 width

Hasonl6an a 3.2 és 3.4 osszefiiggésekbol

height z_range® — x_range™)
2 — () L J_ I =
LA AR " width

Igy abbdl a feltételbsl, hogy az egér alatti pont maradjon helyben a képernyén meg tudtuk
hatdrozni a tr{” és tTZE,Q) értékeket, vagyis mar minden paraméter ismert a nagyitds utdni kiraj-
zolashoz. Ezeknek kiszamitdsit az on_scroll fiiggvényben célszerii elvégezni. Egy lehetséges
implementéacié a melléklet src/examples/plotter-5.cpp allomanyéaban taldlhatd. A 3.7. dbran lat-
haté a grafikus ablak tartalma miutdn az (z,y) = (1, 1) pontra rdnagyitottunk.

Bar az itt végigvitt gondolatmenet nehéznek bizonyulhat a didkok szaméra, érdemes enged-
ni, hogy prébdlkozzanak sajat otletekkel még akkor is, ha azok eleinte nem helyesek (példdul
implementélhatjdk a nagyitast ugy, hogy csak az z_range értékét allitjak be, az eltolasi értéke-
ket véltozatlanul hagyjak, aztan teszteléskor majd kideriil, hogy mi ezzel a gond).

A fiiggvénydbrazold program tovabb bdvithetd tetszdleges fliggvényekkel vagy akar billen-
tylieseményekkel is (pl. adott gomb megnyomadsdra térjiink vissza az eredeti nézetre). Remélhe-
toleg sikeriil elérni vele azt a célt, hogy a didkok az analitikus mértan ismereteiket valamilyen

konkrét gyakorlatban megjelend probléma megoldasara alkalmazzdk.

40

3. FEJEZET: FUGGVENYABRAZOLO PROGRAM KESZITESE

(0999980, 1.002142)

X £ .Iplotter-5
i) =2*sinfx} 15
fix) =-100%(x + 2)
=12
fix) = 5%
Fx) = 1
125
1 S
075
0.5
025
s 05 035 05 X5 7 [F3 15 75
-0.25

3.7. abra. Nagyitott kimenet

41

Irodalomjegyzék

Aho, A. V., Lam, M. S., Sethi, R., és Ullman, J. D. Compilers. Principles, Techniques & Tools.
Pearson Education, 2nd edition, 2007.

Akenine-Moller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., és Hillaire, S. Real-Time
Rendering. CRC Press, 4th edition, 2018.

Bresenham, J. E. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4
(1):25-30, 1965.

Clarke, K. The top-down parsing of expressions. 1986. URL https://www.antlr.org/
papers/Clarke-expr-parsing-1986.pdf.

Godse, A. P. és Godse, D. A. Computer Graphics. Technical Publications Pune, 2007.
Kutepov, A. Olive.c. URL https://github.com/tsoding/olive.c.

Norvell, T. Parsing expressions by recursive descent. 1999. URL https://www.engr.mun.
ca/~theo/Misc/exp_parsing.htm.

Stroustrup, B. The C++ Programming Language. Pearson Education, 4th edition, 2013.

Thain, D. gfx: A simple graphics library (v2). URL https://www3.nd.edu/~dthain/
courses/cse20211/fall2013/gfx/.

42

https://www.antlr.org/papers/Clarke-expr-parsing-1986.pdf
https://www.antlr.org/papers/Clarke-expr-parsing-1986.pdf
https://github.com/tsoding/olive.c
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www3.nd.edu/~dthain/courses/cse20211/fall2013/gfx/
https://www3.nd.edu/~dthain/courses/cse20211/fall2013/gfx/

	Bevezető
	A keretrendszer használata
	Fordítás, projektszerkezet

	Gyakorlatok, feladatok
	A példakód közelebbről
	Négyzetek rajzolása
	Rajzoljunk sakktáblát
	Színátmenetek
	Ceruza
	Szövegvezérelt rajzolóprogram

	Függvényábrázoló program készítése
	Megfeleltetési szabályok kiértékelése
	Koordináta-rendszer és függvénygörbék
	Geometriai transzformációk

