
BABEŞ–BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR

MATEMATIKA ÉS INFORMATIKA KAR

DIDAKTIKAI MESTERI – INFORMATIKA SZAK

Magiszteri dolgozat

Számı́tógépes grafika keretrendszer
középiskolásoknak

TÉMAVEZETŐ:

DR. MEZEI ILDIKÓ-ILONA,
EGYETEMI ADJUNKTUS

SZERZŐ:

BEILAND ARNOLD

2023

BABEŞ–BOLYAI UNIVERSITY OF CLUJ-NAPOCA

FACULTY OF MATHEMATICS AND INFORMATICS

SPECIALIZATION: MASTER IN DIDACTICS – COMPUTER

SCIENCE

Master’s Thesis

A computer graphics framework for high
school students

ADVISOR:

ILDIKÓ-ILONA MEZEI, PHD.
UNIVERSITY LECTURER

AUTHOR:

ARNOLD BEILAND

2023

UNIVERSITATEA BABEŞ–BOLYAI, CLUJ-NAPOCA

FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ

SPECIALIZAREA MASTERAT DIDACTIC – INFORMATICĂ

Lucrare de disertat, ie

Framework de grafică computat, ională pentru
elevi de liceu

CONDUCĂTOR ŞTIINŢIFIC:

LECTOR DR. ILDIKÓ-ILONA MEZEI

ABSOLVENT:

ARNOLD BEILAND

2023

BABEŞ–BOLYAI UNIVERSITY OF CLUJ-NAPOCA
FACULTY OF MATHEMATICS AND INFORMATICS
SPECIALIZATION: MASTER IN DIDACTICS – COMPUTER
SCIENCE

Master’s Thesis

A computer graphics framework for
high school students

Abstract

We propose a low-level C++ computer graphics framework suitable for facilitating the tea-
ching of some aspects of computer programming in a high school environment.

Students can color the pixels of a UI window and render text using simple function calls. No
prerequisite knowledge of object-oriented programming or computer graphics is necessary, the
exercises and problems proposed in this text can be solved using the basic features of C++ that
are covered by the high school curriculum in Romania for students enrolled in the mathematics
and computer science program, grades 9–11.

Starting with simple example code we provide a set of problems with gradually increasing
difficulty that are solvable using the two functions exposed by the framework in the hope of
sparking interest for computer graphics and programming in general and motivating students to
deepen their knowledge. Here they are provided with a way to generate graphical output, which
complements the text based I/O in programs that they are usually required to write (either using
the standard I/O streams or input and output files).

The implementation of this framework is an adapter layer over FLTK, a cross-platform GUI
toolkit. Relying on it made it easier for us to provide a platform-independent implementation
that can be used on Microsoft Windows operating systems and GNU/Linux distributions as
well.

I would like to thank my advisor, Ildikó-Ilona Mezei, who helped me shape these ideas
into a form suitable for an educational setting and reviewed the text, providing feedback that is
highly appreciated.

This work is the result of my own activity. I have neither given nor received unauthorized
assistance on this work.

2023 ARNOLD BEILAND

ADVISOR:
ILDIKÓ-ILONA MEZEI, PHD.
UNIVERSITY LECTURER

Tartalomjegyzék

1. Bevezető 1
1.1. A keretrendszer használata . 2
1.2. Fordítás, projektszerkezet . 5

2. Gyakorlatok, feladatok 12
2.1. A példakód közelebbről . 12
2.2. Négyzetek rajzolása . 14
2.3. Rajzoljunk sakktáblát . 16
2.4. Színátmenetek . 17
2.5. Ceruza . 19
2.6. Szövegvezérelt rajzolóprogram . 23

3. Függvényábrázoló program készı́tése 28
3.1. Megfeleltetési szabályok kiértékelése . 29
3.2. Koordináta-rendszer és függvénygörbék . 32
3.3. Geometriai transzformációk . 36

1. fejezet

Bevezető

Hazánkban a középiskolai programozásoktatás során a diákokat olyan (C++, C vagy Pascal)

programok megírására tanítjuk, melyek szöveges bemenetből valamilyen algoritmussal szöve-

ges kimenetet állítanak elő. Ez az elején csak a standard bemenet és kimenet felhasználását

jelenti, később pedig beolvasást szöveges fájlokból és ezekbe való írást (illetve a standard ki/-

bemenet és a fájlműveletek tetszőleges kombinációit). A hangsúly az információ feldolgozásá-

ra, az alapvető algoritmusok megalkotására és megértésére helyeződik, az adatok megjelenési

formája másodlagos.

Jelen dolgozatban szeretnénk egy könnyen használható C++ keretrendszert javasolni gra-

fikus kimenet előállítására annak reményében, hogy a szöveges adatok használata mellé egy

érdekes és látványos eszköz kerül a diákok kezébe, ösztönözve őket a kísérletezésre és gon-

dolkodásra. Javasolunk néhány (kezdetben egyszerűbb, majd egyre bonyolultabb) feladatot is,

melyek segítségével a tanárok kisebb-nagyobb kihívásokat állíthatnak diákjaik elé. A feladatok

egy része interdiszciplináris jellegű, megoldásukhoz szükséges lesz felhasználni néhány alapis-

meretet az analitikus geometria területéről.

Bár számos nyílt forráskódú C++ grafikus keretrendszer és eszköztár áll a programozók ren-

delkezésére (Qt1, GTK2, WxWidgets3, FLTK4 stb.), ezek általában lényeges mértékben támasz-

kodnak az objektumorientált programozás elemeire (öröklés, polimorfizmus), illetve esetenként

függvénymutatók és sablonok használatára. A középiskolai környezetben való alkalmazás vi-

szont ebből a szempontból jelentős megszorításokkal jár, hiszen ezek a technikák már túlmutat-

nak a középiskolások nagy részének programozástudásán, megtanításukat a jelenleg érvényes

tantervek nem írják elő. Ennek értelmében egy teljesen procedurális grafikus könyvtárra len-
1https://www.qt.io/
2https://gtk.org/
3https://www.wxwidgets.org/
4https://www.fltk.org/

1

https://www.qt.io/
https://gtk.org/
https://www.wxwidgets.org/
https://www.fltk.org/

1. FEJEZET: BEVEZETŐ

ne szükségünk, amit a diákok a megszokott környezetből használhatnak (Code::Blocks IDE

és GCC fordítócsomag, jellemzően Microsoft Windows operációs rendszeren vagy valamilyen

GNU/Linux disztribúción).

Az alapötlet forrásai az Olive.c projekt [Kutepov] és a gfx nevű grafikus könyvtár [Thain].

Az előbbi bizonyos grafikus primitívek (pl. háromszög, ellipszis stb.) kirajzolásával foglalkozik,

de csak memóriában állítja elő a kimenetet megjelenítés nélkül. Az utóbbi tud grafikus ablako-

kat kezelni, de csak X Window System5 fölött működik. Azt is szeretnénk viszont elérni, hogy a

grafikus primitívek (háromszögek, vonalak stb.) kirajzolása már a diákok feladata legyen, csak

egy-egy pixel színének beállítására biztosítsunk nekik beépített függvényt.

Ennek érdekében egy FLTK-ra épülő procedurális keretrendszert állítottunk össze Simple

Graphics Framework (SGF) néven, mely Microsoft Windows operációs rendszereken és GNU/-

Linux disztribúciókon is könnyen használható néhány konfigurációs lépés elvégzése után.

A fejezet további részében ennek technikai részleteit mutatjuk be. A második fejezetben sze-

retnénk néhány fokozatosan nehezedő feladatot javasolni a keretrendszer használatára, a harma-

dik fejezetben pedig egy függvényábrázoló program elkészítésének lépeseit mutatjuk be, mely

egy diákok által implementálható, a megszokott programjaiknál nagyobb kiterjedésű szoftver-

projekt.

Köszönettel tartozom témavezetőmnek, Dr. Mezei Ildikó-Ilonának, akitől hasznos vissza-

jelzéseket kaptam bemutatott ötletek, feladatok és a dolgozat összeállítására vonatkozóan.

1.1. A keretrendszer használata

A keretrendszerrel készíthető legegyszerűbb projekt három fájlból áll: a keretrendszer imp-

lementációja (main.cpp néven), egy forrásfájl, melyben a felhasználó kódja található (ennek

neve tetszőleges) és egy header-állomány (sgf.h), melyben egyrészt a keretrendszer által bizto-

sított, másrészt a felhasználó kódjától elvárt függvények deklarációja található néhány konstans

kíséretében. Ezt a fejállományt mindkét forrásfájlba beillesztjük a megszokott #include direktí-

va segítségével.

A fordítás során a két forrásfájlt (akár külön modulként) tárgykóddá fordítjuk, majd egyetlen

végrehajtható állományt készítünk belőle, megadva a szerkesztőnek az FLTK eszköztár bináris

5https://www.x.org/wiki/

2

https://www.x.org/wiki/

1. FEJEZET: BEVEZETŐ

fájljainak elérési útvonalát is. A diákoktól nem várjuk el, hogy a fordítás technikai részleteit

ismerjék, ezekkel az előre elkészített Code::Blocks projekt build rendszere foglalkozik majd.

A közös header-állomány kódját a mellékletben megtalálható src/sgf.h fájl tartalmazza. Első

része a keretrendszer által biztosított eszközök deklarációja (1.1. kódrészlet).

28 // represents the color of a pixel ,
29 // color components are one -byte integers (0..255)
30 struct Color {
31 uint8_t r, g, b;
32 };
33
34 // can be used for logging status info
35 // (instead of cout)
36 extern std:: ofstream logfile;
37
38 // drawing functions provided by the framework:
39
40 void draw_pixel(int row , int col , Color color);
41
42 void draw_text(int row , int col ,
43 Color color , int size ,
44 const char *text);

1.1. kódrészlet. A keretrendszer által biztosított eszközök

Az elején megadunk egy szín struktúrát, mely egy-egy pixel színét tudja tárolni. Ezt kö-

veti egy ostream típusú objektum, amibe naplóüzeneteket lehet írni, melyek az aktuális mun-

kakönyvtárban létrehozott logfile.txt nevű állományba íródnak. Ide a keretrendszer is írhat

üzeneteket (például helytelen koordinátákra való rajzolás esetén).

Ezek után a keretrendszer által biztosított rajzolófüggvények megadása következik. Az első

függvénnyel egy adott pixelnek lehet a színét beállítani. A grafikus ablakot egy pixelekből álló

mátrixként képzeljük el, így a pixel pozícióját a sor- és oszlopindexe azonosítja, színét pedig az

előbb említett struktúra adja meg.

Mivel alacsony szinten akarjuk tartani a könyvtárat, az egyetlen rajzolófüggvényünk tulaj-

donképpen a draw_pixel(...) kellene legyen. Szerettünk volna ugyanakkor lehetőséget adni

a diákoknak szöveges tartalom megjelenítésére is, de mivel a szöveg pixelekké alakítása már

elég nehéz feladat, ezért erre is adunk kész függvényt (mely ugyanakkor az FLTK eszköztár

hasonló funkcionalitására támaszkodik). Itt az előbbi függvény három paraméterén kívül még

megadjuk a pixelekben kifejezett betűméretet, illetve a szöveget, amit ki akarunk írni. A sor- és

oszlopindex ezen függvény esetén az első betű bal alsó sarkának koordinátáit jelenti.

3

1. FEJEZET: BEVEZETŐ

A fejállomány következő része azon függvények bejelentését tartalmazza, melyek imple-

mentációja a felhasználó (diák) kódjában kell megjelenjen (1.2. kódrészlet). Az inicializáló

függvényt csak a program futásának kezdetekor hívja majd meg a keretrendszer, ez alkalmas

például bemeneti fájlok adatainak beolvasására vagy egyéb kezdőértékek beállítására.

47 // The following functions have to be implemented in user code:
48
49 // called once when the program starts
50 void initialize ();
51
52 // called every time the window needs to be rendered ,
53 // should render all graphical content via calls to
54 // draw_pixel and draw_text
55 void render(int width , int height);
56
57 // mouse events:
58 bool on_scroll(int delta); // delta can be positive or negative
59 bool on_move(int row , int col); // row and col are the current position
60 bool on_mouse_down ();
61 bool on_mouse_up ();
62
63 // key events , the key parameter can be any
64 // key code (including the constants below);
65 // regular characters have the same code as
66 // in ASCII
67 bool on_key_down(int key);
68 bool on_key_up(int key);

1.2. kódrészlet. Az implementálandó függvények

A render(...) függvény meg lesz hívva minden olyan esetben, amikor az ablak tartalmá-

nak kirajzolása szükségessé válik (ilyen az első megjelenítés, az átméretezések és minden olyan

esemény, melynek következtében az operációs rendszer ablakkezelője ezt megköveteli). Min-

den meghívás előtt az ablak tartalma fehér pixelekkel inicializálódik, tehát minden elemet újból

ki kell rajzolni (nem csak azt a részt, ami eddig nem létezett például egy átméretezés esetén).

A következő négy függvény az egéresemények kezelését szolgálja. Görgetéskor megkap-

juk, hogy hány egységet mozgott a görgő (illetve az előjel megadja, hogy fel vagy le), mozgás-

kor azt, hogy éppen mely koordinátákon található az egér, illetve reagálhatunk a bal egérgomb

megnyomására és felengedésére. A függvények visszatérési értéke azt jelzi, hogy újra ki kell-e

rajzolni az ablak tartalmát az esemény feldolgozásának következtében. Ha true értéket térí-

tünk vissza, akkor a keretrendszer újra meghívja a render(...) függvényt és frissíti a grafikus

ablak tartalmát, ellenkező esetben mindez nem történik meg. Tehát ha valamely eseményre nem

4

1. FEJEZET: BEVEZETŐ

szeretnénk reagálni, akkor az annak megfelelő függvény implementációja egyetlen sorból fog

állni, melyben false értéket térítünk vissza.

A következő két függvény a neveiknek megfelelően a billentyűeseményekre való reagálást

teszi lehetővé. Az általunk visszatérített érték hatása ugyanaz, mint az egéresemények esetén. A

keretrendszer által küldött paraméter értéke általában a lenyomott vagy felengedett billentyűnek

megfelelő karakter ASCII kódja, vagy valamilyen speciális érték a többi billentyű esetén. A

fejállomány néhány speciális billentyűkódot tartalmazó konstanssal zárul.

A felhasználók által megírt kódot tehát a keretrendszer az itt felsorolt függvényeken keresz-

tül hívja meg. Ezen függvények ugyanakkor használhatják a keretrendszer által rendelkezésük-

re bocsátott eszközöket (a rajzolófüggvények meghívásának természetesen csak a render(...)

függvényben, vagy az innen meghívott segédfüggvényekben van értelme).

1.2. Fordítás, projektszerkezet

A keretrendszer implementációja az FLTK eszköztárra épülő adapter réteg, mely megtalál-

ható a melléklet src/main.cpp állományában. Azért választottuk az FLTK eszköztárat mert a na-

tív implementációval ellentétben nem kell külön kódot írjunk a két célplatformra. Natív megol-

dás esetén ugyanis a Microsoft Windows operációs rendszerek és a GNU/Linux disztribúciókra

feltelepített X Window System teljesen különböző interfészeket adnak a programozóknak grafi-

kus alkalmazások készítésére. Ugyanakkor más keretrendszerekhez képest az FLTK viszonylag

kis méretű, és a nagyobb keretrendszerek által biztosított többletfunkcionalitásra nincs szüksé-

günk.

Az iskolai környezetben való alkalmazhatóság nem csak a programozási nyelv felhasználha-

tó funkcióiban, hanem a függőségek és eszközök megválasztásakor is fontos szempont. Napja-

inkban a legtöbb iskolában a diákok Microsoft Windows operációs rendszer valamely verzióját

használják az órákon. Előfordulhat, hogy a programcsomagok telepítésére viszont csak az arra

kijelölt személynek van joga (egy-egy rendszergazdának), ezért szerettünk volna olyan megol-

dást találni, amihez nem kell adminisztrátori jogosultság a rendszeren.

Az FLTK keretrendszer lefordítható forráskódból is adott célrendszeren (erre vonatkozó

részletek megtalálhatók a fejlesztők által publikált dokumentációban6). A könnyebb telepítés

6https://www.fltk.org/documentation.php

5

https://www.fltk.org/documentation.php

1. FEJEZET: BEVEZETŐ

végett viszont az MSYS2 eszközrendszer csomagjai között megtalálható bináris változatot7 fog-

juk használni.

Az MSYS2 olyan könyvtárak és build eszközök gyűjteménye, melyekkel natív Windows

programokat lehet elkészíteni. Megfelel a célkörnyezetünknek, mert tetszőleges könyvtárba te-

lepíthető, így telepítéséhez nem kell adminisztrátori jogosultság a rendszeren. Továbbá számos

csomagot és függőséget telepíthetünk vele, többek között a fordítóprogramokat, a C++ standard

könyvtárat és az FLTK keretrendszert is.

A projektjeink előkészítéséhez tehát először töltsük le a legfrissebb telepítőfájlt az MSYS2

weboldaláról8, majd indítsuk el a telepítést tetszőleges útvonalat megadva célkönyvtárként (ld.

1.1. ábra).

1.1. ábra. MSYS2 telepítési útvonal

A telepítőn végighaladva fogadjuk el az alapértelmezett beállításokat, a végén pedig ne

hagyjuk megjelölve az MSYS2 futtatására vonatkozó jelölőnégyzetet.

Az MSYS2 csomagban több alrendszer található, mindegyik a neki megfelelő parancssorral

és feltelepített szoftvercsomag-gyűjteménnyel. Ezek közül itt a MinGW64 nevűt fogjuk hasz-

nálni, tehát indítsuk el a telepítési könyvtárból a mingw64.exe nevű programot, majd adjuk ki

a pacman -Syu parancsot és hagyjuk jóvá a telepítést. Ez frissíti a csomagokról tárolt informá-

ciókat és a rendszer saját csomagjait. A telepítés végén valószínűleg újra kell majd indítani a

programot (ld. 1.2. ábra).

7https://packages.msys2.org/package/mingw-w64-x86_64-fltk
8https://www.msys2.org/

6

https://packages.msys2.org/package/mingw-w64-x86_64-fltk
https://www.msys2.org/

1. FEJEZET: BEVEZETŐ

1.2. ábra. MSYS2 frissítése

Ezek után az újraindított MinGW parancssorban adjuk ki az alábbi parancsot és hagyjuk

jóvá a telepítést:

pacman -Syu mingw-w64-x86_64-toolchain mingw-w64-x86_64-fltk

Ezzel feltelepítjük GCC fordítót és GDB debuggert (a toolchain csomag részeként), illetve

az FLTK keretrendszert is.

A következőkben szükségünk lesz a Code::Blocks integrált fejlesztői környezetre, mely a

legtöbb iskolában rendelkezésre áll (illetve a diákok gépére is fel van telepítve). Ha mégsem,

akkor a weboldalukról9 letölthető telepítő és telepítést nem igényló változat is (letöltéskor vá-

laszthatjuk azon változatokat is, amelyekben nincs meg a MinGW csomag, hiszen az MSYS2

alatti fordítót fogjuk majd használni).

Következő lépésben a Code::Blocks-ban beállítjuk, hogy az MSYS2 alatti fordítót és de-

buggert szeretnénk használni. Ezért először a Settings menü Compiler menüpontját választva

9https://www.codeblocks.org/

7

https://www.codeblocks.org/

1. FEJEZET: BEVEZETŐ

a megjelenő beállításablak Toolchain executables fülén beállítjuk a GCC fordítónk telepítési

útvonalát (ld. 1.3. ábra).

1.3. ábra. Fordító beállítása Code::Blocks-ban (amennyiben az MSYS2 rendszert a C:\msys64
útvonalra telepítettük)

A debugger elérési útvonalát hasonlóan megadhatjuk a Settings / Debugger menüpontra

kattintva, itt már a gdb.exe útvonalát kell beállítani (ld. 1.4. ábra).

1.4. ábra. Debugger beállítása Code::Blocks-ban (amennyiben az MSYS2 rendszert a
C:\msys64 útvonalra telepítettük)

Ezen beállítások után elkészíthetjük az első Code::Blocks projektet, ami használja a keret-

rendszerünket. Készítsünk egy új projektet az Empty project sablont választva a varázslóból,

majd a Project / Properties menüpontra kattintva felnyíló ablak Build targets fülén állítsuk át

a típust Console application-ről GUI application-re úgy a Debug, mint a Release konfigurá-

ció esetén (ld. 1.5. ábra). Ez azért szükséges, hogy ne nyíljon meg minden indításkor egy üres

konzolablak is a grafikus programunk mellett.

Másoljuk be a mellékletben található src/main.cpp, src/sgf.h és src/examples/rendering-

sample.cpp fájlokat a Code::Blocks projekt könyvtárába, majd adjuk hozzá őket a projekthez

(utóbbit megtehetjük jobb egérgombbal kattintva a projekt nevére és az Add files menüpontot

8

1. FEJEZET: BEVEZETŐ

1.5. ábra. Projekt típusának beállítása Code::Blocks-ban

választva). Ezek után az 1.6. ábrának megfelelő projektszerkezet fog látszani a bal oldali pane-

len.

1.6. ábra. Code::Blocks projekt szerkezete

Még el kell végezzünk két beállítást azért, hogy egyrészt fordításkor legyenek elérhetőek az

FLTK fejállományai, másrészt pedig a szerkesztő számára legyenek elérhetőek az FLTK bináris

állományai.

Futtassuk az előbb használt mingw64.exe parancssorban az fltk-config --cxxflags paran-

csot és ennek kimenetét másoljuk be a vágólapra. A Code::Blocks projektünk Project / Build

options menüpontján megnyíló ablak bal oldali panelén válasszuk ki a projekt nevét (azért,

hogy ne csak az egyik build konfiguráció beállításait módosítsuk, hanem mindkettőt), majd az

Other compiler options fül alatti mezőbe illesszük be az előbb bemásolt kimenetet, kitörölve

belőle a -O2 opciót (azaz a könnyebb debuggolás céljából egyenlőre nem kapcsoljuk be a GCC

optimizációkat).

Majd futtassuk szintén a MinGW parancssorban az fltk-config --ldflags parancsot és ki-

menetét másoljuk be a vágólapra, aztán illesszük be az előbbi beállításablak Linker settings

fülének Other linker options mezőjébe, és írjuk még a végére a -lm opciót.

Mentsük le az beállításablakon elvégzett módosításokat, majd a projekt rendering-

sample.cpp nevű fájljában az sgf.h fejállománynak megfelelő #include direktívából töröljük

9

1. FEJEZET: BEVEZETŐ

ki a ../ előtagot (ez ugyanis csak azért került oda, mert a mellékletben a példaprogramok egy

alkönyvtáron belül helyezkednek el).

Ezek után kellene működjön a program fordítása és futtatása, egy grafikus ablak kell meg-

jelenjen, melyben a „Hello, world!” szöveg látszik.

Mivel a projekt elkészítési és konfigurálási lépéseinek végrehajtásakor sok a hibalehetőség,

ezeket legközelebb már megspórolhatjuk, ha a projektfájlt (*.cbp) és a forrásfájlokat lemásol-

juk, majd a projektfájlt szövegszerkesztővel megnyitva kicseréljük a kezdeti projekt nevének

minden előfordulását a kívánt új projektnévre, illetve ennek megfelelően átnevezzük magát a

projektfájlt is.

1 <?xml version="1.0" encoding="UTF -8" standalone="yes" ?>
2 <CodeBlocks_project_file >
3 <FileVersion major="1" minor="6" />
4 <Project >
5 <Option title="sgf-test-2" />
6 <Option pch_mode="2" />
7 <Option compiler="gcc" />
8 <Build>
9 <Target title="Debug">

10 <Option output="bin/Debug/sgf-test-2" prefix_auto="1"
extension_auto="1" />

11 <Option object_output="obj/Debug/" />
12 <Option type="0" />
13 <Option compiler="gcc" />
14 <Compiler >
15 <Add option="-g" />
16 </Compiler >
17 </Target >
18 <Target title="Release">
19 <Option output="bin/Release/sgf-test-2" prefix_auto="1"

extension_auto="1" />
20 <Option object_output="obj/Release/" />

1.3. kódrészlet. Részlet a Code::Blocks projektfájlból

Amennyiben szeretnénk a létrejött végrehajtható programot egyenesen a fájlrendszerből

vagy akár más számítógépen elindítani, akkor az MSYS2 telepítési könyvtárának mingw64/bin

alkönyvtárából mellé kell másolni a szükséges run-time függőségeket (libfltk.dll, libgcc_s_seh-

1.dll, libstdc++-6.dll és libwinpthread-1.dll). Amennyiben valamelyikük hiányzik, egy Win-

dows hibaablak értesít majd erről minket.

Ha a projektet GNU/Linux operációs rendszer alatt akarjuk használni, akkor annak függvé-

nyében, hogy van-e jogunk csomagokat telepíteni a rendszerre, egyik lehetőség, hogy az adott

10

1. FEJEZET: BEVEZETŐ

disztribúció szoftvergyűjteményéből feltelepítjük az FLTK keretrendszer csomagját (pl. https:

//archlinux.org/packages/community/x86_64/fltk/, https://packages.ubuntu.

com/jammy/libfltk1.3-dev stb.), vagy pedig lefordítjuk kézzel forráskódból a dokumen-

tációban leírtaknak megfelelően (ld. https://www.fltk.org/doc-1.3/intro.html). Ezek

után a Code::Blocks projekt felépítése hasonló, annyi különbséggel, hogy MinGW helyett az

adott rendszerre feltelepített parancssort, fordítót és debuggert használjuk.

A mellékletben az src nevű könyvtárban megtalálható a keretrendszer és a példaprogramok

forráskódja mellett egy Makefile is, ennek segítségével a GNU Make build rendszert is hasz-

nálhatjuk programjaink lefordítására (amennyiben az FLTK telepítése már megtörtént), illetve

egyszerre lefordíthatjuk a példaprogramokat, melyek között szerepel a következő fejezetekben

tárgyalt feladatok egy részének megoldása is. Ezt inkább tanároknak ajánljuk, hiszen a diákok

esetében pont az lenne a lényeg, hogy ők jöjjenek rá a feladatok megoldására, ne kapják meg

készen azokat.

Szintén a melléklet része az FLTK jelenlegi verziójának (1.3.8) forráskódja és dokumen-

tációja az fltk könyvtárban, továbbá egy bin-win64 nevű könyvtár a példaprogramok bináris

változatával (64 bites Windows célrendszerre lefordítva) és a futtatáshoz szükséges függősé-

gekkel.

11

https://archlinux.org/packages/community/x86_64/fltk/
https://archlinux.org/packages/community/x86_64/fltk/
https://packages.ubuntu.com/jammy/libfltk1.3-dev
https://packages.ubuntu.com/jammy/libfltk1.3-dev
https://www.fltk.org/doc-1.3/intro.html

2. fejezet

Gyakorlatok, feladatok

Ebben a fejezetben bemutatunk néhány különböző nehézségű feladatot, melyek megoldha-

tók a keretrendszer segítségével. A tanár szemszögéből tárgyaljuk bizonyos feladatok egy-egy

megoldási ötletét is, a megoldás leírásában megjelenő gondolatok és kódrészletek közül a diá-

koknak általában csak annyit érdemes odaadni, amennyire szükség van (vagyis szeretnénk, ha

a megoldások minél nagyobb részben tőlük származnának). A feladatokat felhasználó tanár a

körülményeknek megfelelően eldöntheti, hogy mit és mennyit mond el a megoldás menetéből.

Mivel egy-egy pixel színét egy struktúra tárolja, illetve a képernyőre rajzolás C++ függvé-

nyek meghívásán keresztül történik, ezért a jelenlegi informatika tantervnek megfelelően ezeket

a feladatokat leginkább 11. osztályban, illetve az intenzív informatika tantervnek megfelelően

már 10. osztályban ajánlott alkalmazni, miután a szükséges nyelvi elemeket a diákok megis-

merték. A feladatok alkalmat adnak úgy az általános gondolkodási képesség fejlesztésére, mint

a korábban elsajátított ismeretek felhasználására (pl. struktúrák és karakterláncok alkalmazása).

2.1. A példakód közelebbről

Nézzük meg az előző fejezetben futtatott példakód render függvényét (2.1. kódrészlet). Fi-

gyeljük meg, hogy a megjelenő ablakban látható „Hello, world!” szöveget kirajzoló draw_text

függvényhívás mellett még négy darab pixelt is kirajzolunk az ablak négy sarkának megfelelő

sor- és oszlopkoordinátákra. Ezek színe piros, mert a Color struktúra r, g és b adattagjainak eb-

ben a sorrendben a 255, 0, 0 értékeket adjuk (a színkomponensek értéke egy-egy 0 és 255 közötti

egész szám kell legyen). Ha a megjelenő ablakról képernyőképet készítünk, veszteségmentesen

lementjük (például PNG formátumban), majd egy képszerkesztővel ránagyítunk, akkor a címsor

alatti rész négy sarkában megfigyelhető a négy piros pixel (ld. 2.1. ábra).

12

2. FEJEZET: GYAKORLATOK, FELADATOK

30 void render(int width , int height)
31 {
32 draw_pixel (0, 0, {255 ,0 ,0});
33 draw_pixel(height -1, 0, {255 ,0 ,0});
34 draw_pixel (0, width -1, {255 ,0 ,0});
35 draw_pixel(height -1, width -1, {255 ,0 ,0});
36
37 draw_text (40, 20, {0,0,0}, 20, "Hello , world!");
38 }

2.1. kódrészlet. A példakód render(...) függvénye

(a) bal felső sarok (b) jobb felső sarok

(c) bal alsó sarok (d) jobb alsó sarok

2.1. ábra. Nagyított képernyőfelvételek a grafikus ablak sarkairól

A keretrendszer által nyújtott funkcionalitás jobb megértése érdekében elvégezhetjük a kö-

vetkező gyakorlatokat:

1. Nyissuk meg a színpalettát egy tetszőleges képszerkesztőben (pl. GIMP, MS Paint) és

keressük meg, hogy honnan tudjuk adott szín piros, zöld és kék komponenseinek értékét

leolvasni. Válasszunk egy színt és színezzük ki ezzel a programunkban a teljes hátteret.

Próbáljuk megadni a színek egyes komponenseit hexadecimális konstansként is (például

255 helyett a 0xFF literált használva).

2. Helyezzünk el egy logfile << "render "<< width << "x"<< height << endl; kiírást a

render függvény elejére, majd a program elindítása után végezzünk el egy-egy átmé-

13

2. FEJEZET: GYAKORLATOK, FELADATOK

retezést. Code::Blocks-ból való futtatás esetén a projektkönyvtárban, ellenkező esetben

pedig az aktuális katalógusban létrejött-e egy logfile.txt nevű állomány, melyben nyomon

követhetjük, hogy hányszor és milyen méretekkel volt meghívva a render függvény. A

kiírásban az endl fontos, mert új sorra térés mellett még a kimeneti puffert is üríti, így

rögtön az utasítás végrehajtása után a fájlba kerül az kiírt szöveg.

3. Helyezzünk el megfelelő kiírásokat az egér- és billentyűesemények kezelőfüggvényei-

ben is, majd a naplófájl tartalma alapján figyeljük meg, hogy melyik függvényt mikor és

milyen értékekkel hívja meg a keretrendszer.

2.2. Négyzetek rajzolása

A következő feladat, hogy rajzoljunk ki a grafikus ablakba egy sötétzöld négyzetet, a lehető

legnagyobb méretben és középre igazítva. A négyzet oldala nem lehet nagyobb sem az ablak

szélességénél, sem a magasságánál. Ha az ablak belseje nem pont négyzet alakú, akkor vagy a

négyzet két oldalán, vagy pedig alatta és felette valamekkora részt üresen kell hagyni.

Egy lehetséges megoldás található az alábbi kódrészletben, a kimenet két különböző ablak-

méret esetén pedig a 2.2. ábrán.

31 void render(int width , int height)
32 {
33 int side = min(width , height);
34 int margin_cols = (width - side)/2;
35 int margin_rows = (height - side)/2;
36
37 for (int i = 0; i < side; ++i)
38 for (int j = 0; j < side; ++j)
39 draw_pixel(margin_rows + i, margin_cols + j, { 0, 120, 0 });
40 }

2.2. kódrészlet. Zöld négyzet kirajzolásához használt render függvény

Ha ez sikerült, akkor a négyzetes mátrixokban a főátló és mellékátló fogalmának átismétlé-

sére javasolhatjuk például a következőket:

1. Színezzük ki a négyzet főátló feletti és főátló alatti részét két különböző színnel.

2. Az előbbi két zónában még tegyünk különbséget a mellékátló feletti és alatti részek között

14

2. FEJEZET: GYAKORLATOK, FELADATOK

2.2. ábra. Zöld négyzetek

is, állítsunk elő a 2.3a. ábrához hasonló kimenetet. A főátlón és mellékátlón levő pixelek

színe megegyezhet vagy a felettük, vagy az alattuk található zóna színével.

3. Színezzük feketére a főátló és mellékátló vonalaihoz közel álló pixeleket a 2.3b. ábrának

megfelelően (a vastagság lehet tetszőleges vagy felnagyítva megszámolhatjuk az ábrán a

fekete pixeleket minden soron).

(a) Felosztás főátló és mellékátló mentén (b) Átlóvonalak

2.3. ábra. Négyzetekkel kapcsolatos feladatok kimenetei

15

2. FEJEZET: GYAKORLATOK, FELADATOK

2.3. Rajzoljunk sakktáblát

Ebben a feladatban egy fokkal több tervezésre lesz szükség a rendelkezésre álló hely beosz-

tásához. Egy sakktáblát szeretnénk kirajzolni a 2.4. ábrának megfelelően.

2.4. ábra. Sakktábla

Első lépésben megnézhetjük, hogy legfeljebb mekkora lehet a négyzetünk. Az előző fel-

adatban szereplő két megkötésen kívül (az oldalhossz nem lehet nagyobb a szélességnél és a

magasságnál) még azt is szeretnénk, ha az oldalhossz nyolc többszöröse lenne, hogy mindegyik

kis négyzet ugyanakkora legyen. Miután kiszámoltuk a szükséges hosszúságokat, egy világos

és egy sötét színt választva néhány ciklus segítségével kirajzolhatjuk a pixeleket (egy lehetséges

megoldás a 2.3. kódrészletben).

Javasoljuk még a következő feladatokat:

1. Általánosítsuk a rajzolást n × n méretű tábla esetére (ahol az n pozitív egész számot az

initialize függvényen belül egy fájlból olvassuk be).

2. Próbáljuk meg eltüntetni a maradékos osztás miatt megjelenő vékony fehér csíkokat

(a 2.4. ábrán ezek a sakktábla felett és alatt látszanak). Ezt megoldhatjuk például úgy,

hogy az osztási maradéknak megfelelő pixeleket az első vagy utolsó sor négyzeteinek

magasságához adjuk hozzá, vagy elosztjuk azokat majdnem egyenlően a négyzetek kö-

zött (persze nem jut majd mindegyiknek).

3. Oldjuk meg, hogy kattintáskor a világos és sötét színek felcserélődjenek a táblán

(újabb kattintáskor pedig visszaálljanak eredeti állapotukba. Ehhez implementáljuk az

16

2. FEJEZET: GYAKORLATOK, FELADATOK

on_mouse_down eseménykezelőt, mely egy globális változóban számolja a kattintások szá-

mát (vagy nyilvántartja azok paritását) és true értéket térít vissza. Majd a render függ-

vényben a kattintások számának megfelelően cseréljük fel a színeket, ha szükséges.

32 void render(int width , int height)
33 {
34 int side = min(width , height)/8;
35 int margin_cols = (width - 8*side)/2;
36 int margin_rows = (height - 8*side)/2;
37
38 Color light { 220, 180, 130 };
39 Color dark { 90, 40, 0 };
40
41 for (int i = 0; i < 8; ++i)
42 for (int j = 0; j < 8; ++j) {
43 Color color = (i+j)%2 == 0 ? light : dark;
44 for (int row = 0; row < side; ++row)
45 for (int col = 0; col < side; ++col)
46 draw_pixel(
47 margin_rows + i*side + row ,
48 margin_cols + j*side + col ,
49 color);
50 }
51 }

2.3. kódrészlet. Sakktábla kirajzolásához használt render függvény

2.4. Színátmenetek

A következő feladattal szeretnénk az eddig leginkább csak konstans értékként használt szí-

nek algoritmikus manipulálását gyakoroltatni.

Írjunk egy színkeverő függvényt, mely két színt és egy valós számot kap paraméterként és

egy (kevert) színt térít vissza. A valós szám a [0, 1] intervallum eleme és azt szeretnénk, ha a

függvény a két színt (1 − r) : r arányban keverné (például r = 0 esetén az első színt, r = 1

esetén a második színt, r = 0.5 esetén a két szín számtani középarányosát térítse vissza, r = 1
3

esetén pedig azt a színt, mely a két szín 2
3
-dal és 1

3
-dal súlyozott számtani középarányosa). A

színekkel végzett műveleteket komponensenként értelmezzük, tehát külön végezzük el a keve-

rést az egyes komponensekre. Egy lehetséges implementációja a színkeverő függvénynek a 2.4.

kódrészletben látható. A keverés komponensenként történik és az eredmény nyolc bites egésszé

való kerekítését (pontosabban csonkolását) a beépített típuskonverzióra bízzuk.

17

2. FEJEZET: GYAKORLATOK, FELADATOK

1 Color combine(Color c1, Color c2, double ratio)
2 {
3 Color c;
4 c.r = c1.r * (1-ratio) + c2.r * ratio;
5 c.g = c1.g * (1-ratio) + c2.g * ratio;
6 c.b = c1.b * (1-ratio) + c2.b * ratio;
7 return c;
8 }

2.4. kódrészlet. Színkeverő függvény

Ezt a keverőfüggvényt felhasználva állítsunk elő a 2.5. ábrán látható színátmeneteket. Mind

a négy képernyőfelvételen egy sárga ({255,255,50}) és egy piros ({230,30,30}) szín közötti

átmenet látható.

(a) balról jobbra (b) fentről le

(c) bal felső saroktól mért távolság (d) középponttól mért távolság

2.5. ábra. Színátmenetek

Az első ablak esetén balról jobbra haladva szeretnénk egyik színből a másikba átmenni,

tehát a keverési arány meghatározásában csak az oszlopindex játszik szerepet. A második ablak

esetén ugyanakkor fentről lefelé halad az átmenet, ezért itt csak a sorindexnek van hatása az

18

2. FEJEZET: GYAKORLATOK, FELADATOK

arányra. A harmadik átmenet előállításakor a pixelek bal felső saroktól mért távolságának és

a lehetséges legnagyobb ilyen távolságnak (azaz a jobb alsó sarok távolságának) az arányát

használtuk keverési arányként, míg a negyedik átmenet esetén a középponttól mért távolságot

arányítjuk a lehetséges legnagyobbhoz (azaz valamelyik sarok középponttól mért távolságához).

A négy átmenet egy-egy lehetséges implementációja megtalálható a melléklet src/gradient-

lr.cpp, src/gradient-updown.cpp, src/gradient-dist.cpp és src/gradient-circular.cpp állományai-

ban.

A CSS1-ben megszokott színátmenetekből inspirálódva egy fokkal nehezebb feladatokat is

javasolhatunk. Egyik ötlet, hogy implementáljuk az előbb bemutatottakhoz hasonló átmeneteket

több mint két színnel. Például három szín esetén a balról jobbra haladó átmenet a legbaloldalibb

oszloptól a középsőig átmegy az első színből a másodikba, a középső oszloptól a jobboldaliig

pedig a második színből a harmadikba. A színek számát, a színkódokat és az átmenet típusát

megadhatjuk egy bemeneti fájlban. Másik nehezítési lehetőség, hogy a balról jobbra és fentről

lefelé haladó átmenetek általánosításaként állítsunk elő adott szögben eldőlt lineáris színátme-

netet.

2.5. Ceruza

Az alábbiakban szeretnénk a rajzolóprogramokban általában ceruza néven ismert funkció-

hoz hasonló viselkedést előállítani. Tehát amíg a felhasználó lenyomva tartja a bal egérgombot,

az egér mozgását követő vonal jelenjen meg a vásznon.

Ezt megvalósíthatjuk a keretrendszer által kezelt egéreseményekkel, de szükséges lesz tá-

rolni az aktuális képet, hiszen esetleges újrarajzolásokkor már nem fogjuk tudni az egér régebbi

pozícióit. Tehát vegyünk egy elég nagy (pl. 1920 × 1080-as vagy akár még nagyobb felbon-

tásnak megfelelő) kétdimenziós tömböt, és ebben fessük be a pixeleket valahányszor az egér

úgy halad át egy pixelen, hogy a bal egérgomb le van nyomva (illetve akkor is befesthetjük az

aktuális pixelt, hogyha éppen most nyomódik le). A render függvényben meg csak rajzoljuk ki

a grafikus ablakba a lementett kép azon részét, amelyik elfér benne (például a bal felső saroktól

indulva). Az előbbiek alapján az első implementációnk a melléklet src/examples/pencil-1.cpp

állományában található és a 2.6a ábrának megfelelő viselkedést látjuk, ha megpróbálunk rajzol-

ni valamit az egérrel.
1Cascading Style Sheets, https://www.w3.org/TR/CSS/

19

https://www.w3.org/TR/CSS/

2. FEJEZET: GYAKORLATOK, FELADATOK

(a) Egy-egy pixel rajzolása (b) 3× 3-as négyzetek rajzolása

2.6. ábra. Ceruza kezdeti implementációi

Ez a vonal túl vékony, így alig látható, ezért próbáljunk meg ne csak egy-egy pixelt elhe-

lyezni a képen az egéresemények során, hanem mondjuk egy-egy 3×3-as, vagy akár tetszőleges

méretű négyzetet, melynek közepe (vagy páros méret esetén egyik középponti pixelje) az egér

pozíciója. Ennek implementációja a melléklet src/examples/pencil-2.cpp állományában találha-

tó, egy rajz pedig a 2.6b ábrán.

Még mindig hagy kívánni valót maga után a rajzolóprogramunk viselkedése, ugyanis az

egérrel leírt görbe azon részein, ahol viszonylag gyorsan mozgattuk az egeret, szaggatott lett

a kirajzolt vonal. Ezt az okozza, hogy ilyen esetekben nem hívódik meg az on_move függvény

minden pixelre, amin az egér áthalad, ezek közül csak néhányat kapunk meg.

Ki kell találjunk tehát valamilyen megoldást arra, hogy amennyiben az egérgomb nem lett

felengedve, de nem két egymás melletti koordinátapár érkezik be az on_move függvény két egy-

másutáni meghívásába, akkor a két pont közötti helyet valamilyen módon töltsük ki. Az első

ötlet, hogy egy egyenes szakasz mentén színezzük be a pixeleket, viszont mivel ezek csak egész

koordinátákra kerülnek, ezért egy kis kerekítésre is szükség lesz.

Tegyük fel például, hogy az első hívásban a (sor1, oszlop1) = (0, 0) pozíciót, a másodikban

pedig a (sor2, oszlop2) = (3, 7) pozíciót kapjuk meg az on_move függvény paraméterein keresz-

tül. Ha a szakasz függőleges vagy vízszintes lenne, akkor egyértelmű, hogy mely pixeleket kell

beszínezni. Jelen esetben viszont ez nem áll fenn, úgyhogy írjuk fel a végpontokra illeszkedő

egyenes explicit egyenletét kifejezve például a sorindexet az oszlopindex segítségével:

sor =
sor2 − sor1

oszlop2 − oszlop1
· oszlop +

sor1oszlop2 − sor2oszlop1
oszlop2 − oszlop1

.

20

2. FEJEZET: GYAKORLATOK, FELADATOK

Ha ebbe az egyenletbe rendre behelyettesítjük az oszlop1 és oszlop2 közötti egész számokat,

akkor megkapjuk, hogy azon paraméterértékekre melyik sorindexet kellene választani, viszont

ez nem lesz mindig egész szám, ezért kénytelenek vagyunk kerekíteni (ld. 2.7. ábra). Ezt úgy

is felfoghatjuk, hogy azt a pixelt fogjuk beszínezni, amelynek a középpontja közelebb van az

egyenesen található ponthoz (amennyiben a pixelek középpontjait tekintjük a sík egész koordi-

nátájú pontjainak).

0 1 2 3 4 5 6 7

0

1

2

3

2.7. ábra. Pixelek színezése egy egyenes mentén

Ezen ötlet megvalósítása során tehát a diákok analitikus mértan ismereteiket is fel kell hasz-

nálják a cél eléréséhez. Egy lehetséges implementáció a melléklet src/examples/pencil-3.cpp

állományában található, azonban ennek viselkedése még mindig nem kielégítő. Figyeljük meg,

hogy bár a kevésbé meredek vonalak folytonosnak látszanak, ha meredekebben próbálunk raj-

zolni (lefelé vagy felfelé), még mindig bizonyos helyeken szaggatott lesz a vonal (ld. 2.8. ábra).

2.8. ábra. Egérpozíciók közötti helyek kitöltése egyenes mentén

21

2. FEJEZET: GYAKORLATOK, FELADATOK

Lássunk egy példát arra, hogy ez miként történhet meg. Tegyük most fel, hogy az első hívás-

ban a (sor1, oszlop1) = (0, 0) pozíciót, a másodikban pedig a (sor2, oszlop2) = (7, 3) pozíciót

kapjuk meg az on_move függvény paraméterein keresztül. Az előző megközelítést használva

a 2.9. ábrának megfelelő pixeleket színezné ki a kódunk, viszont látszik, hogy hézagok marad-

nak: nem minden 0 és 7 közötti egész szám jelenik meg (kerekített) sorindexként, az egyenes

ehhez túl meredek.

0 1 2 3

0

1

2

3

4

5

6

7

2.9. ábra. Pixelek színezése egy egyenes mentén

Ezen probléma elkerülésére az egyik módszer, hogy ilyenkor fordítva írjuk fel az egyenes

egyenletét, tehát az oszlopindexet fejezzük ki a sorindex függvényében, majd minden sorinde-

xen végighaladva kerekítés után megkapjuk, hogy ezen a soron melyik oszlopindexű pixelt kell

kifesteni (vagy esetleg több pixelt az adott pozíció körül, lásd a vastagság tárgyalását a feladat

elején). Az egyenlet alakja ekkor:

oszlop =
oszlop2 − oszlop1

sor2 − sor1
· sor +

oszlop1sor2 − oszlop2sor1
sor2 − sor1

,

és az egyenes meredekségének függvényében vagy ezt, vagy az előzőt használjuk majd. Ponto-

sabban, ha két egymás után megkapott pozíció esetén a sorindexek különbsége nagyobb abszo-

lút értékű mint az oszlopindexek különbsége, akkor ezt a felírást (ilyenkor az egyenes meredek),

ellenkező esetben pedig az előzőt.

22

2. FEJEZET: GYAKORLATOK, FELADATOK

Ez a módszer digital differential analyzer néven ismert (lásd például [Godse és Godse,

2007], 2.3.1. rész), egy lehetséges implementációját a melléklet src/examples/pencil-4.cpp állo-

mánya tartalmazza. Az alábbiakban javasolunk még néhány feladatot:

1. Az „R” billentyű lenyomására töröljük a képernyő tartalmát, az „1”, „2”, stb. gombok

megnyomása esetén változtassuk az aktuális vonalvastagságot, a „P”, „Z”, „K”, „F” bil-

lentyűk lenyomása esetén pedig változtassuk az aktuális színt (pirosra, zöldre, kékre, il-

letve feketére) és az ez után következő vonalakat az így kapott vastagsággal és színnel

rajzoljuk.

2. Rajzoljunk ki egy (megfelelő színű és méretű) pöttyöt az egér aktuális pozíciójára (ez

nem része a képnek, csak egérgomb lenyomása esetén váljon majd azzá).

3. A raszterezéshez (a kifestendő pixelek megállapításához) a digital differential analyzer

helyett implementáljuk Bresenham algoritmusát (ld. [Bresenham, 1965] vagy [Godse és

Godse, 2007], 2.3.2. rész).

2.6. Szövegvezérelt rajzolóprogram

A vektorgrafikát használó rajzolórendszerek egy része szöveges formátumban megadott be-

menettel dolgozik. Ennek egyik legelterjedtebb példája az SVG (Scalable Vector Graphics)2

néven ismert fájlformátum. Jelen feladatban olyan program előállítását tűzzük ki célul, ami egy

ennél sokkal egyszerűbb formátumú szöveges bemenet alapján állítja elő a képet megfelelő

draw_pixel hívások során.

Minden kirajzolandó geometriai alakzat esetén adott annak típusa, az elhelyezéshez szüksé-

ges információk és a kitöltés színe. Tekintsük például az alábbi három alakzatot:

– téglalap: a megadáshoz elég ha megadjuk a bal felső és jobb alsó sarok koordinátáit,

illetve a kitöltés színét;

– kör(lap): a megadásához szükség van a középpont koordinátáira, a sugárra és a kitöltés

színére;

– háromszög(lap): ennek megadásakor leírjuk a csúcsok koordinátáit és a kitöltés színét.

2https://www.w3.org/Graphics/SVG/

23

https://www.w3.org/Graphics/SVG/

2. FEJEZET: GYAKORLATOK, FELADATOK

Az egyszerűség kedvéért az előbb felsorolt adatokat szóközzel elválasztott egész számok

formájában felsorolhatjuk egy szöveges fájlban, például a 2.5. kódrészletnek megfelelően. Eb-

ben az esetben három alakzatot szeretnénk kirajzolni: egy zöld téglalapot, egy piros kört és egy

kék háromszöget.

1 3
2 rectangle 10 10 200 250 0 255 0
3 circle 200 500 80 255 0 0
4 triangle 150 150 400 120 430 500 0 0 255

2.5. kódrészlet. Rajzolóprogram bemenete

Amennyiben az ablakunk elég nagy ahhoz, hogy ezek elférjenek benne, akkor azt szeret-

nénk, ha ezen bemenet esetén a program futtatásakor a 2.10. ábrán látható kimenet jelenne meg

az ablakban.

2.10. ábra. A kirajzolt alakzatok

A megvalósítás egyik módja, hogy a render függvény meghívásakor végigjárjuk az ablak

pixeleit, majd ha egy pixel valamelyik síkidom belső tartományában helyezkedik el, akkor an-

nak a színére színezzük ki (illetve ha több olyan is van, akkor ezek közül az utolsónak a színére,

így elérjük, hogy a később kirajzolt alakzatok legyenek felül az eredményben).

Ehhez a diákoknak szüksége lesz a matematikából tanult analitikus mértan ismeretek egy

részére. Téglalap esetén könnyű a döntés, mert azok a pontok vannak a belső tartományban,

24

2. FEJEZET: GYAKORLATOK, FELADATOK

melyeknek a sor- és oszlopkoordinátája is a bal felső illetve jobb alsó sarok sor- és oszlop-

koordinátái által meghatározott intervallumokban található. Kör esetén azon pontok vannak a

belső tartományban, melyek távolsága a középponttól nem nagyobb, mint a sugár. Háromszög

esetén pedig felírhatjuk az oldalegyenesek egyenleteit, majd megnézzük hogy a kérdéses pont

mindhárom oldalegyenesnek ugyanazon az oldalán található-e, mint az egyeneseken nem sze-

replő csúcs (teszteléskor sajátos esetként érdemes figyelmet fordítani a függőleges és vízszintes

oldalegyenesekre).

Az ötlet egy lehetséges implementációja a melléklet src/examples/textdraw-1.cpp állomá-

nyában található.

Transzláció

Az eddigiekben a képernyőn és a rajzon ugyanazt a koordináta-rendszert használtuk, tehát

a képernyő r-edik sorának c-edik pixelje egyben a rajzolás síkjának (r, c) koordinátájú pontja,

a bal felső saroktól lefelé és jobbra számolva. Ha azonban az ablakméret nem elég nagy, akkor

előfordulhat, hogy a rajznak csak egy része látszik (a negatív tartományok pedig egyáltalán

nem).

Erre azt a megoldást javasoljuk, hogy a rajz váljon mozgathatóvá, vagyis ha bal egérgombot

lenyomva tartva húzzuk az egeret, akkor a mutató elmozdulásának megfelelően mozogjon a rajz

is. Ezt implementálhatjuk úgy, hogy az on_move függvény segítségével folyamatosan nyilván-

tartjuk az egér kurzor legutóbbi helyét és amennyiben a bal egérgomb le van nyomva, akkor a

legutóbbi és aktuális hely közötti elmozdulásnak megfelelően eltoljuk a képet, tehát a rajzolás

és a képernyőfelület koordináta-rendszere el lesz tolva egymáshoz képest.

Az aktuális eltolás nyilvántartására elég két változót használni. Legyen tehát trrow és trcol

a rajz azon sor és oszlopkoordinátája, melyet a képernyő (0, 0) pozíciójára fogunk rajzolni. Ez

azt jelenti, hogy amikor a képernyő (i, j) koordinátájú pixelének akarjuk a színét megállapítani,

akkor a rajzolási síkban az (i+ trrow, j + trcol) koordinátájú pontot vizsgáljuk (azaz ellenőriz-

zük, hogy benne van-e a síkidomok valamelyikében), így tetszőlegesen eltolt állapotot tudunk

megjeleníteni a render függvényben.

Amennyiben az egérrel mozgatjuk a képet és azt vesszük észre, hogy az egérmutató az

25

2. FEJEZET: GYAKORLATOK, FELADATOK

(r1, c1) pozícióról az (r2, c2) pozícióra mozdult el, akkor trrow és trcol értéke a

trrow ← trrow − (r2 − r1), illetve

trcol ← trcol − (c2 − c1)

szabályoknak megfelelően kell változzon. Például ha az egér lefelé és jobbra mozdul el, akkor

a trrow és trcol koordinátáknak egyaránt csökkenniük kell, mert a rajznak már a kisebb sor és

oszlop-koordinátájú részeit is látni szeretnénk. Ugyanakkor a rajz elmozdulásának a mértéke

így egyenlő az egér elmozdulásának mértékével, ezért a felhasználónak úgy tűnik majd, hogy

az a pont, amit „megfogott” az egérrel, helyben marad az egérmutató alatt.

Ezen ötlet implementációja nem kellene nehézséget okozzon, egy lehetséges változata a

melléklet src/examples/textdraw-2.cpp állományában megtalálható. Sajnos a mozgatás nem túl

hatékony, mert folyton újra kell számolni az összes képpontot (és egyes rendszereken érezhető-

en akadozva követi a rajz mozgása az egérmutatót).

Javasoljuk a következő gyorsítási ötletet: minden alakzat esetén mentsünk le egy legkisebb

és legnagyobb sor és oszlopindexet, melyeken kívül eső pontok biztosan nem részei az alakzat

belső tartományának (például háromszög esetén a csúcsok sor-koordinátájának minimumánál

kisebb sor-koordinátájú pont biztosan nem része a háromszögnek stb.). Ezen információkat elő-

re kiszámolva minden alakzat esetén kapunk egy gyors elutasítási feltételt a képernyő pontjai-

nak nagy részére (tehát a bonyolultabb és itt-ott lebegőpontos számokkal végzett műveleteket

igénylő mértani számításokat nem kell majd minden pontra végrehajtani). Az ötlet egy imple-

mentációja a melléklet src/examples/textdraw-3.cpp forrásfájljában található és érezhetően javít

a rajzolás hatékonyságán (vagyis az előző implementációnál lényegesen gyorsabban követi itt a

rajz az egérmutatót).

Egyéb optimalizációs ötletek is felmerülhetnek, például nem kellene feltétlenül újraszámol-

ni a képpontok színét azokban a zónákban, melyek eltolás előtt és után is részei a megjelenített

képnek, ezek eltolt megjelenítéséhez fel lehetne használni az előző képet (amennyiben előzőleg

elmentettük azt).

További feladatok

1. Implementáljuk az egyenes szakasz (adottak a végpontok, vastagság és szín), a parale-

logramma (adott három szomszédos csúcsa, vagy egy csúcspontot és két vektor), illetve

26

2. FEJEZET: GYAKORLATOK, FELADATOK

a konvex sokszög (adottak a csúcspontok) primitíveket.

2. A grafikus primitívek esetén adjunk lehetőséget adott vastagságú és adott színnel színezett

keret létrehozására (például fekete körvonalon belül pirosra színezett körlap).

3. A bemenet formátumát tegyük könnyebben olvashatóvá. Például a rectangle

10 10 200 250 0 255 0 bemenet helyett fogadjuk el a bemeneten a rectangle

(10,10) (200,250) rgb(0,255,0) szöveget és dolgozzuk fel karaktersorként a C++-

ban rendelkezésre álló eszközökkel. A fehér karakterek (szóköz, tabulátor) számának ne

legyen jelentősége. A szín megadásánál fogadjunk el hexadecimális konstanst is a CSS-

ben megszokott formátumnak megfelelően, például rgb(0,255,0) helyett #00FF00

alakban.

4. Készítsünk egy circle2 nevű alakzattípust, mely olyan körlapot rajzol, amelynek kör-

vonala áthalad három megadott nem kollineáris ponton.

5. A 2.10. ábrán látható lépcsősen recézett éleket szeretnénk elkerülni. Ezt a jelenséget alia-

sing-nek, az elkerülésére használt módszereket pedig anti-aliasing-nek nevezi a szakiro-

dalom (lásd például [Akenine-Möller et al., 2018], 5.4. rész). Implementáljunk egyszerű

felbontásduplázásra épülő supersampling típusú anti-aliasing algoritmust: duplázzuk meg

az ismert pontok sor és oszlopindexeit és képzeljük el, hogy a képernyő szélessége és

magassága is kétszer akkora, mint amit megkaptunk. Ekkor tulajdonképpen kétszer ak-

kora felbontásban tudjuk kirajzolni a képet (sorok és oszlopok szempontjából egyaránt).

Ezen a nagy képen négy-négy pixel színét átlagoljuk (2 × 2-es négyzeteket) és megka-

punk egy, az eredeti felbontásnak megfelelő képet, de már kevésbé éles színátmenetekkel.

Egy lehetséges (memória szempontjából hatékony) implementációt tartalmaz a melléklet

src/examples/textdraw-4.cpp állománya, a kimenet változása pedig a 2.11. ábrán látható.

(a) anti-aliasing nélkül (b) kétszeres felbontással

2.11. ábra. A fentebbi 2.10. ábra kék háromszögének jobb alsó sarka (nagyítva)

27

3. fejezet

Függvényábrázoló program készı́tése

Ebben a fejezetben egy függvényábrázoló program elkészítését tűzzük ki célul. A bemenet

az ábrázolni kívánt egyváltozós valós számfüggvények megfeleltetési szabályait megadó szöve-

ges állomány (egy példa a 3.1. kódrészletben). A kimeneten pedig egy, a 3.1. ábrán láthatóhoz

hasonló képet szeretnénk előállítani, melyet később egérrel mozgathatóvá (és akár nagyítható-

vá) is teszünk majd.

1 2*sin(x)
2 -2*x + 1
3 1.2

3.1. kódrészlet. Függvényábrázoló program bemenete

3.1. ábra. A függvényábrázoló program egy kimenete

28

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

Mivel a funkcionalitások száma és bonyolultsága itt jelentősen nagyobb annál, mint ami-

vel az eddigi feladatok során találkoztunk, ezért egyrészt a célközönség már inkább csak az

érdeklődő, átlagnál jobb programozói készséggel rendelkező diákokra szűkül, másrészt pedig

a függvényábrázoló program implementációját leginkább projekt jelleggel ajánljuk (az osztály-

ban feladott kötelező megoldandó feladat helyett).

Első lépésben figyeljük meg, hogy a bemeneten megadott függvényeket számos pontban ki

akarjuk majd értékelni. Tehát szükség lesz egy programrészre, mely a megadott karaktersorok

alapján (illetve azokat tetszőleges adatszerkezetté alakítva) képes lesz a felhasználó által beírt

függvények tetszőleges argumentumhoz tartozó függvényértékét meghatározni.

Amint ki tudjuk értékelni a függvényeket el kell majd dönteni, hogy milyen pixeleket kell

a képernyőn beszínezni ahhoz, hogy a matematika órákon történő függvényábrázoláskor meg-

szokott konvencióknak megfelelő képet állítsunk elő (például szeretnénk, hogy az összes függ-

vényt ugyanabban a koordináta-rendszerben legyen ábrázolva, láthatóak legyenek a koordináta-

tengelyek, az egységnek ugyanakkora hossz feleljen meg ezeken).

Végül annak érdekében, hogy a program minél hasznosabb legyen a felhasználói számára,

szeretnénk elérni, hogy egérműveletekkel tetszőlegesen mozgatható és nagyítható legyen a gra-

fikus kép, vagyis a felhasználó ennek bármely részét meg tudja vizsgálni akár nagy pontossággal

is (megfelelően ránagyítva arra részre, amiben érdekelt).

3.1. Megfeleltetési szabályok kiértékelése

A szöveges adatok értelmezése, beleértve akár az aritmetikai kifejezések kiértékelését is

nem idegen a programozói versenyeken részt vevő diákok számára. Szükség van rá például az

alábbi feladatok megoldásához (a két infoarena.ro-n megtalálható feladat leírása román nyelvű,

a többi angol):

– https://codeforces.com/problemset/problem/188/H,

– https://infoarena.ro/problema/dir,

– https://infoarena.ro/problema/evaluare,

– https://codeforces.com/problemset/problem/778/B,

– https://codeforces.com/problemset/problem/7/E

29

https://codeforces.com/problemset/problem/188/H
https://infoarena.ro/problema/dir
https://infoarena.ro/problema/evaluare
https://codeforces.com/problemset/problem/778/B
https://codeforces.com/problemset/problem/7/E

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

Esetünkben egy-egy függvény megfeleltetési szabálya olyan kifejezés lesz, melyben a szá-

mok, a négy alapművelet és a csoportosítást szolgáló zárójelek mellett még megjelenhet az x

változószimbólum, mely a függvény argumentumát jelenti. Szeretnénk továbbá néhány ismert

függvényt is elérhetővé tenni a felhasználóknak (pl. sin(x),
√
x, stb.).

Első lépésben tehát az lenne a cél, hogy készítsünk egy programot, amely ilyen kifejezé-

seket képes kiértékelni. Például minden beolvasott kifejezés esetén írjuk ki a képernyőre az

általuk megadott függvény -2, -1, 0, 1, 2 valós argumentumokhoz rendelt függvényértékét (már

amennyiben értelmezett ezekben az argumentumértékekben, ellenkező esetben pedig például a

NAN értéket).

A nyelvi elemzés (parsing) megvalósítására a szakirodalomban több megközelítés megjele-

nik (lásd például [Aho et al., 2007] 4. fejezetét). Jelenlegi feladatunkhoz egy rekurzív leszállásra

épülő elemző megírását javasoljuk, többnyire azért, mert implementálható indirekt rekurzió se-

gítségével néhány függvény között, és az implementáció megértéséhez nincs szükség a formális

nyelvek elméletéhez kapcsolódó háttérismeretekre.

Amennyiben azt szeretnénk, hogy a diákok maguk álljanak elő a teljes implementációval,

ahhoz jó eszköz akár a fentebb említett versenyfeladatok végigoldása, akár egy specifikusan

rekurzív leszállással foglalkozó anyag tanulmányozása (pl. [Clarke, 1986] vagy [Stroustrup,

2013] 10.2. rész, illetve más online elérhető anyagok és oktatóvideók). Azt is megtehetjük, hogy

odaadunk a diákoknak egy részleges implementációt (például olyat, amiben csak az összeadás,

szorzás és részkifejezések zárójelezése támogatott), majd annak bővítése lesz a feladatuk.

A mellékletben megtalálható src/examples/plotter-0.cpp állomány egy lehetséges imple-

mentációt add olyan elemzőre, mely a négy alapműveletet, a zárójelezést és a szinusz függvényt

ismeri. A rekurzív leszállás módszerével egy kifejezésfát építünk, majd ezt bejárva határozzuk

meg a függvényértéket az egyes argumentumok esetén. Néhány alap szintű hiba is kezelésre

kerül.

Az alábbi nyelvtannak megfelelően minden nemterminális szimbólumot egy-egy függvény

kezel (a szóközök nem kötelezőek):

30

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

expr : term [+|−] term [+|−] ... [+|−] term

term : token [∗|/] token [∗|/] ... [∗|/] token

token :

egy valós szám

x

(expr)

sin(expr)

Ennek megfelelően az elemzést a parse_expr, parse_term és parse_token függvények vég-

zik, menet közben pedig egy kifejezésfát építünk (mindegyik függvény visszatéríti a részkifeje-

zésének megfelelő részfa gyökércsomópontjának címét, vagy egy hiba típusú csomópont címét

megfelelő üzenettel). Az evaluate_expression függvény pedig az elkészült fát bejárva egy-egy

valós x argumentumra ki tudja értékelni a kifejezést.

Amennyiben a gyökeres fák, illetve azok bejárásának fogalma még nem ismert, elkerülhet-

jük ezeket a fordított lengyel forma bevezetésével és a shunting yard algoritmus használatával

(ld. [Norvell, 1999]).

A 3.2. ábrán látható az elemző program egy kimenetének részlete (kiírtuk a beolvasott ki-

fejezéseket, majd azok értékét az x ∈ {−2,−1, 0, 1, 2} pontokban). A kiíráshoz, választottunk

néhány különböző színt, hogy később a megfelelő függvénygörbék is ilyen színűek legyenek

(ha túl sok függvény van megadva, akkor egy idő után újra felhasználjuk a színeket).

Az elemző és a kiértékelés funkcionalitását számos irányba bővíthetjük. Javasoljuk a követ-

kező feladatokat:

1. A sin függvény mellett implementáljuk még a cos, tg, ctg, arcsin, arccos, arctg, arcctg,

ln, sqrt, exp függvényeket. Kiértékeléskor az értelmezési tartományon kívül eső argu-

mentumokra térítsünk vissza NAN értéket.

2. Adjunk hozzá hatványozást (például az x^3 kifejezés jelentse x-nek a harmadik hatvá-

nyát). Figyeljünk oda a műveletek sorrendjére (a hatványozás bevezetése tulajdonképpen

újabb függvény bevezetését igényli, hasonlóan, mint az összeadás és szorzás viszonyának

esetében).

3. A kerek zárójelpár mellett (mely a csoportosítást jelenti), vezessük be a szögletes és kap-

31

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

3.2. ábra. Az elemző kimenete

csos zárójelpárokat, melyek az egészrészt és törtrészt számítják majd ki, illetve a függőle-

ges vonalakat, melyek az abszolút értéket. Például [x] az x egészrésze, {2x} a 2x törtrésze

és |sin(x)| a sin(x) abszolút értéke.

3.2. Koordináta-rendszer és függvénygörbék

A függvények megfeleltetési szabályainak értelmezése után szeretnénk kirajzolni a

koordináta-tengelyeket úgy, hogy azok nagyjából az ablak vízszintes és függőleges szimmet-

riatengelyei legyenek (azért csak nagyjából, mert páros szélesség vagy magasság esetén nem

tudunk egy pontosan középső sor és oszlopindexet meghatározni). A render függvénybe be-

érkező width és height paramétereken keresztül megkapjuk az aktuális ablak szélességét és

magasságát, ennek megfelelően legyen az Ox tengely a
⌊
height

2

⌋
indexű soron, az Oy tengely

pedig a
⌊
width

2

⌋
indexű oszlopon (ezen sort és oszlopot feketére festjük). Továbbá szeretnénk

még egy szürke négyzetrácsot, ahol a rácspontok az egész koordinátájú pontok. Ehhez meg

kell tudjuk mondani, hogy milyen oszlopindexekre kerülnek az egész x koordináták, és milyen

sorindexekre kerülnek az egész y koordináták.

Építsünk fel tehát egy koordináta-transzformációt a függvényábrázolás koordináta-

rendszere illetve a pixelek kirajzolásának koordináta-rendszere között. A függvényábrázolás

koordináta-rendszerében az origó az ablak közepe (pontosabban a
⌊
height

2

⌋
sorindexű és

⌊
width

2

⌋
oszlopindexű pixel), az Ox tengely vízszintes és jobb oldalra haladva nő, az Oy tengely pedig

32

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

függőleges és felfelé haladva nő. Az pixelek megjelenítésének koordináta-rendszerében pedig

az origó a bal felső sarok, innen lefelé nőnek a sorindexek (amik ráadásul egész számok), jobbra

haladva pedig az oszlopindexek.

Szabadon megválaszthatjuk, hogy egy pixelnyi távolság mekkora távolságnak felel meg a

valós számsíkon. Tegyük fel például, hogy ezt úgy akarjuk megválasztani, hogy az ablak teljes

szélessége x_range egységnyi távolságnak feleljen meg az Ox tengelyen (x_range-et meg-

választhatjuk mondjuk 10-nek, de az általánosság kedvéért szimbolikus alakban használjuk).

Ekkor width pixelnyi távolság megfelel x_range darab egységnek a vízszintes tengelyen, ezért

egy pixelnyi távolság x_range
width

lesz és fordítva, egy egységnek width
x_range darab pixel felel meg.

Ekkor adott c oszlopindex esetén az x koordináta az

x =

(
c−

⌊width
2

⌋)
· x_range

width

összefüggéssel, illetve adott x koordináta esetén a neki megfelelő c oszlopindex a

c =
⌊width

2

⌋
+
⌊
x · width

x_range

⌋
összefüggéssel adható meg. Ez utóbbi persze csak egy közelítő érték, mert kénytelenek vagyunk

egész számot kihozni oszlopindexnek, viszont az ebből származó hibát elhanyagolhatónak te-

kintjük. Sőt, kerekítés helyett alsó egész részt használunk az implementáció egyszerűsége miatt

(ekkor ugyanis nem kell round függvényt hívni, elég ha egy egész típusú változóba mentjük a

kiszámolt lebegőpontos értéket).

Hasonlóan megállapíthatjuk az y koordináta és az r sorindex közötti összefüggéseket, csak

arra kell vigyázni, hogy az y koordináta felfelé haladva nő, a sorindex pedig lefelé. Ennek

megfelelően

y =

(⌊height
2

⌋
− r

)
· x_range

width
,

illetve

r =
⌊height

2

⌋
−
⌊
y · width

x_range

⌋
.

Figyeljük meg, hogy ugyancsak az x_range
width

és width
x_range váltószámokat használtuk mert azt sze-

retnénk, ha az egységnyi távolság ugyanakkora lenne mindkét tengelyen (tehát tulajdonképen

megszabtuk, hogy a képernyő szélessége x_range távolságot fedjen le, a magassága pedig a

33

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

képaránynak megfelelően ennél nagyobb vagy kisebb távolságot fed le y irányban).

Ezzel megvan az eszköztárunk ahhoz, hogy a négyzetrácsot is kirajzoljuk. A koordi-

nátatranszformációk további ellenőrzése céljából még jelenítsük meg azokat a koordinátá-

kat is, melyek az egér aktuális pozíciójának felelnek meg a függvényábrázolás koordináta-

rendszerében, a 3.3. ábrához hasonló kimenetet előállítva (természetesen az egér pozícióját

aktualizálni kell minden mozgási esemény során). Egy lehetséges implementáció a melléklet

src/examples/plotter-1.cpp állományában található. Az említett elemek mellett még kirajzol-

tuk a négyzetrács egyeneseinek megfelelő koordinátákat, illetve meghagytuk az előző részben

tárgyalt elemzőt és a függvénykifejezések kiírását (ezek ugyanis részei maradnak a végtermék-

nek).

3.3. ábra. Koordináta-tengelyek és egér pozíciója

Ha ezzel megvagyunk, elkezdhetjük magát a függvényábrázolást. Egy viszonylag termé-

szetesnek tűnő ötlet a következő: az f függvény ábrázolásához számoljuk ki rendre az egyes

oszlopindexeknek megfelelő x koordinátát, a kifejezéskiértékelő függvénnyel számoljuk ki az

ennek megfelelő f(x) függvényértéket, majd keressük meg, hogy mely sorindex felel meg en-

nek (már amennyiben az a látható részben található) és fessük be a megfelelő pixelt a függvény

színére. Ezen ötlet implementációját tartalmazza a melléklet src/examples/plotter-2.cpp állomá-

nya, az eredmény viszont korántsem kielégítő (ld. 3.4. ábra).

A probléma hasonló, mint a ceruza eszközt implementáló feladat esetében az előző fejezet-

34

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

(a) teljes kimenet (b) egy felnagyított rész

3.4. ábra. Első próbálkozás a függvények ábrázolására

ben. Bár egymás melletti oszlopoknak megfelelő x koordinátákban értékeljük ki a függvénye-

ket, előfordulhat, hogy a függvényértékek különbsége akkora, hogy nem egymásutáni sorinde-

xeket kapunk, hanem hézagok maradnak. Egy lehetséges megoldás az előző fejezetben tárgyalt

digital differential analyzer algoritmus implementálása, viszont javasolunk itt egy másik mód-

szert, mellyel valamivel simábbnak tűnő kimenetet tudunk előállítani (anélkül, hogy bonyolult

anti-aliasing algoritmusok implementálásában gondolkodnánk).

Tegyük fel, hogy a j indexű oszlop i indexű sorába kell egy pixelt kirajzoljunk, a j + 1

indexű oszlopban pedig már az i + k indexű sorba esik a befestendő képpont (azok az esetek

zavarnak, amelyekben k ≥ 2). Eljárhatunk úgy, hogy a j és j + 1 indexű oszlopokon egyaránt

befestjük az i, i + 1, ..., i + k sorokon levő pixelek mindegyikét, de a j indexű oszlopon egyre

csökkenő, a j + 1 indexű oszlopon pedig egyre növekvő intenzitással. Tehát a függvényérték-

nek megfelelő képpont lesz a legerősebb színű mindkét oszlop esetén, de elérjük azt is, hogy a

sorindexek közötti átmenet fokozatosan történjen meg (ne legyenek ugrások). Persze ez csak a

valóban folytonos függvények ábrázolásakor jó stratégia, de ettől most eltekintünk (vagyis felté-

telezzük, hogy folytonos függvényekkel dolgozunk, csak az értelmezési tartományon kívül eső

argumentumok esetét vizsgáljuk). Az ötlet implementációját a melléklet src/examples/plotter-

3.cpp állománya tartalmazza, az eredményt pedig a 3.5. ábra szemlélteti.

További feladat lehetne, hogy a négyzetrács beosztásait ne mindig egységenként vegyük fel,

hanem igazodjunk az ablak méretéhez, hogy a szürke vonalak ne legyenek se túl sűrűn, se túl

ritkán. A két rácsvonal közötti távolságot beállíthatjuk például kettőnek a megfelelő hatványára

35

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

(a) teljes kimenet (b) egy felnagyított rész

3.5. ábra. Folytonos függvénygörbék előállítása

(tehát egy, kettő, négy stb. egységre, vagy másik irányban fél, negyed stb. egységre annak meg-

felelően, hogy melyik esetén van nem túl nagy és nem túl kicsi távolság két rácsvonal között).

Ez különösen hasznos lesz majd a nagyítás implementálása után.

3.3. Geometriai transzformációk

Hasznosabbá tenné a függvényábrázoló programot, ha a függvények grafikus képének nem

mindig ugyanazt a tartományát mutatnánk. Ebben a részben transzlációt és nagyítást implemen-

tálunk, hogy a felhasználó a megfelelő egérműveletekkel el tudja mozgatni a grafikus képet,

illetve rá tudjon nagyítani annak egy-egy részére.

Az eddigiekben a pixelek kirajzolásának koordináta-rendszere mellett használtunk egy xOy

ortonormált koordináta-rendszert, melyet a függvényábrázolás koordináta-rendszerének nevez-

tünk és amelynek középpontja az ablak közepe, illetve benne az egységhossz akkora, hogy az

ablak teljes szélessége x_range egység hosszú legyen.

Ezúttal a függvények ábrázolását áttesszük egy másik, x′O′y′ koordináta-rendszerbe, mely

az alkalmazott transzformációknak megfelelően viszonyul majd az xOy koordináta-rendszerhez

(hasonló megoldást már láttunk az előző fejezetben, de ott a pixelek kirajzolásának koordináta-

rendszeréhez képest volt egy eltolásunk).

36

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

Transzláció

Kezeljük először az eltolást. Jelölte trx és try az x′O′y′ koordináta-rendszer O′ kezdőpont-

jának koordinátáit az xOy koordináta-rendszerben. Ekkor érvényesek azx′ = x− trx

y′ = y − try

, illetve

x = x′ + trx

y = y′ + try

összefüggések. Ez azt jelenti, hogy ha a grafikus ablak c oszlopindexe az x koordinátának felel

meg az xOy koordináta-rendszerben, akkor a függvényt nem az x argumentumban értékeljük

ki, hanem az annak megfelelő x′ argumentumban. Továbbá az y′ = f(x′) függvényértékhez

társított y koordinátának megfelelően tudjuk majd a színezni kívánt pixel sorindexét meghatá-

rozni (ld. 3.6. ábra). A színezni kívánt pont (x, y) koordinátáiból az oszlop- és sorindexre való

átszámolást már az előbbiekben elvégeztük.

x

y

x′

y′

O

O′

•

•

x = 2

x′ = x− trx

••
y′ = sin(x′)

•
y = y′ + try

3.6. ábra. Az f(x) = sin(x) függvény grafikus képe eltolva (trx = −3, try = 2) és a két
koordináta-rendszer

37

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

Természetesen a grafikus ablakban csak az x′O′y′ koordináta-rendszert és az ennek megfe-

lelő négyzetrácsot mutatjuk majd a felhasználónak, hiszen ennek van információértéke a függ-

vényábrázolás szempontjából.

Az implementációhoz még hozzá tartozik, hogy az egérmozgásnak megfelelően változtas-

suk trx és try értékét (feltéve, hogy a bal egérgomb le van nyomva, azaz a felhasználó mozgatni

akarja az ábrát). Ha például az egér a mozgás során dr sorral került lejjebb és dc oszloppal

jobbra az előző pozíciójához képest, akkor a

trx ← trx + dc ·
x_range
width

,

illetve

try ← try − dr ·
x_range
width

átalakításokat kell elvégezzük (tehát az egér elmozdulását átalakítjuk az xOy koordináta-

rendszerben megfelelő elmozdulássá, ezzel azt az érzést keltjük, hogy az a pont, amin állva

a felhasználó lenyomta az egérgombot, végig az egérmutató alatt marad, együtt mozog vele).

Amennyiben az egér felfelé és/vagy balra mozgott, akkor a dr és dc értékek közül valamelyik

vagy mindkettő negatív lesz.

A koordinátatranszformációkat egybevonva felírhatunk megfeleltetéseket egyenesen az

x′Oy′ és a pixelek rajzolásának koordináta-rendszere között (ahol r-rel jelöljük a sorindexet,

c-vel az oszlopindexet). Egyrészt már tudjuk, hogy

x =

(
c−

⌊width
2

⌋)
· x_range

width
, c =

⌊width
2

⌋
+
⌊
x · width

x_range

⌋
,

y =

(⌊height
2

⌋
− r

)
· x_range

width
, r =

⌊height
2

⌋
−
⌊
y · width

x_range

⌋
.

Amennyiben ezekben áttérünk az x′ és y′ koordinátákra (a trx és try eltolásnak megfelelően),

azt kapjuk, hogy:

x′ =

(
c−

⌊width
2

⌋)
· x_range

width
− trx, c =

⌊width
2

⌋
+
⌊
(x′ + trx) ·

width

x_range

⌋
,

y′ =

(⌊height
2

⌋
− r

)
· x_range

width
− try, r =

⌊height
2

⌋
−
⌊
(y′ + try) ·

width

x_range

⌋
.

Ezeknek megfelelően tulajdonképpen már nincs is szükség az xOy-beli koordinátákra az imp-

38

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

lementációban.

A transzlációval kiegészített implementáció megtalálható a melléklet src/examples/plotter-

4.cpp állományában. Az említett elemek mellet persze még a négyzetrácson is alkalmazni kell

a megfelelő eltolást, illetve az egér aktuális pozíciójának koordinátáit is az x′O′y′ koordináta-

rendszernek megfelelően kell kiírni.

Nagyítás

Szeretnénk olyan nagyítást implementálni, mely az egér aktuális pozícióját is figyelembe

veszi (tehát az egér alatt található pont maradjon helyben, de az ábra nőjön meg minden al-

kalommal, amikor például görgetünk egyet felfelé, illetve legyen kisebb lefelé görgetéskor).

Ez pont az a viselkedés, ami képszerkesztők vagy térképszoftverek esetében a felhasználóknak

megszokott.

Azt szeretnénk tehát, hogy az x_range adott arányban nőjön vagy csökkenjen görgetéskor

(például minden on_scroll függvényhívás esetében 5%-kal változzon a delta paraméter elő-

jelének megfelelően), de az egér alatti képpont maradjon helyben. Viszont azt, hogy hova és

mekkorára rajzoljuk a grafikus képeket és a négyzetrácsot, jelenleg három állapotparaméter jel-

lemzi: x_range, trx és try.

Tegyük fel, hogy ezen paraméterek jelenlegi értékei x_range(1), tr(1)x és tr
(1)
y , a nagyítás

utáni értékek pedig x_range(2), tr(2)x és tr
(2)
y , melyek közül x_range(2)-ről már tudjuk, hogy

milyen értéke kell legyen (az előbbi gondolatmenetnek megfelelően). A feladatunk tehát, hogy

megtaláljuk azokat az értékeket tr(2)x -nek és tr
(2)
y -nek, amelyek mellett az éppen az egér alatt

levő pont helyben marad a képernyőn.

Ha az egér sor- és oszlopindexe jelenleg mr és mc, akkor x′O′y′-ben a neki megfelelő pont

koordinátái

mx′ =

(
mc −

⌊width
2

⌋)
· x_range(1)

width
− tr(1)x , (3.1)

illetve

my′ =

(⌊height
2

⌋
−mr

)
· x_range(1)

width
− tr(1)y . (3.2)

Azt szeretnénk, ha nagyítás után is a sík (mx′ ,my′) pontja az (mc,mr) pixelkoordinátákra ke-

39

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

rülne, vagyis teljesülne, hogy

mx′ =

(
mc −

⌊width
2

⌋)
· x_range(2)

width
− tr(2)x , (3.3)

illetve

my′ =

(⌊height
2

⌋
−mr

)
· x_range(2)

width
− tr(2)y . (3.4)

.

Ekkor a 3.1 és 3.3 összefüggésekből(
mc −

⌊width
2

⌋)
· x_range(1)

width
− tr(1)x =

(
mc −

⌊width
2

⌋)
· x_range(2)

width
− tr(2)x ,

ahonnan

tr(2)x = tr(1)x +

(
mc −

⌊width
2

⌋)
· x_range(2) − x_range(1)

width
.

Hasonlóan a 3.2 és 3.4 összefüggésekből

tr(2)y = tr(1)y +

(⌊height
2

⌋
−mr

)
· x_range(2) − x_range(1)

width
.

Így abból a feltételből, hogy az egér alatti pont maradjon helyben a képernyőn meg tudtuk

határozni a tr
(2)
x és tr(2)y értékeket, vagyis már minden paraméter ismert a nagyítás utáni kiraj-

zoláshoz. Ezeknek kiszámítását az on_scroll függvényben célszerű elvégezni. Egy lehetséges

implementáció a melléklet src/examples/plotter-5.cpp állományában található. A 3.7. ábrán lát-

ható a grafikus ablak tartalma miután az (x, y) = (1, 1) pontra ránagyítottunk.

Bár az itt végigvitt gondolatmenet nehéznek bizonyulhat a diákok számára, érdemes enged-

ni, hogy próbálkozzanak saját ötletekkel még akkor is, ha azok eleinte nem helyesek (például

implementálhatják a nagyítást úgy, hogy csak az x_range értékét állítják be, az eltolási értéke-

ket változatlanul hagyják, aztán teszteléskor majd kiderül, hogy mi ezzel a gond).

A függvényábrázoló program tovább bővíthető tetszőleges függvényekkel vagy akár billen-

tyűeseményekkel is (pl. adott gomb megnyomására térjünk vissza az eredeti nézetre). Remélhe-

tőleg sikerül elérni vele azt a célt, hogy a diákok az analitikus mértan ismereteiket valamilyen

konkrét gyakorlatban megjelenő probléma megoldására alkalmazzák.

40

3. FEJEZET: FÜGGVÉNYÁBRÁZOLÓ PROGRAM KÉSZÍTÉSE

3.7. ábra. Nagyított kimenet

41

Irodalomjegyzék

Aho, A. V., Lam, M. S., Sethi, R., és Ullman, J. D. Compilers. Principles, Techniques & Tools.
Pearson Education, 2nd edition, 2007.

Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., és Hillaire, S. Real-Time
Rendering. CRC Press, 4th edition, 2018.

Bresenham, J. E. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4
(1):25–30, 1965.

Clarke, K. The top-down parsing of expressions. 1986. URL https://www.antlr.org/
papers/Clarke-expr-parsing-1986.pdf.

Godse, A. P. és Godse, D. A. Computer Graphics. Technical Publications Pune, 2007.

Kutepov, A. Olive.c. URL https://github.com/tsoding/olive.c.

Norvell, T. Parsing expressions by recursive descent. 1999. URL https://www.engr.mun.
ca/~theo/Misc/exp_parsing.htm.

Stroustrup, B. The C++ Programming Language. Pearson Education, 4th edition, 2013.

Thain, D. gfx: A simple graphics library (v2). URL https://www3.nd.edu/~dthain/
courses/cse20211/fall2013/gfx/.

42

https://www.antlr.org/papers/Clarke-expr-parsing-1986.pdf
https://www.antlr.org/papers/Clarke-expr-parsing-1986.pdf
https://github.com/tsoding/olive.c
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www3.nd.edu/~dthain/courses/cse20211/fall2013/gfx/
https://www3.nd.edu/~dthain/courses/cse20211/fall2013/gfx/

	Bevezető
	A keretrendszer használata
	Fordítás, projektszerkezet

	Gyakorlatok, feladatok
	A példakód közelebbről
	Négyzetek rajzolása
	Rajzoljunk sakktáblát
	Színátmenetek
	Ceruza
	Szövegvezérelt rajzolóprogram

	Függvényábrázoló program készítése
	Megfeleltetési szabályok kiértékelése
	Koordináta-rendszer és függvénygörbék
	Geometriai transzformációk

