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Abstract

By means of a basic software application, we would like to demonstrate the practical use of B-curves
and B-surfaces defined over extended Chebyshev spaces (EC spaces) in control point based graphical
modeling.

Using existing theoretical results we present numerical methods for computing the (zeroth and higher
order) derivatives of the blending functions needed for generating EC B-curves and surfaces as well as
algorithms for the general order elevation and subdivision of these. A basis transformation between the
ordinary basis and the unique normalized B-basis (NB-basis) of an EC space is also presented, making
control point based exact description possible for curves and surfaces given in a parametric form.

The application is written in C++ using the OpenGL and OpenMP libraries as well as the Qt Widgets
framework. It provides the possibility of handling any EC space that can be identified by the solution
space of a constant-coefficient homogeneous linear differential equation defined by the user. The multi-
threaded implementation of the algorithms mentioned is numerically stable and efficient in practice for
spaces with up to a sufficiently large dimension number.
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Bevezeto

Jelen dolgozat célja egy példaalkalmazas keretein beliil bemutatni a kiterjesztett Csebisev fiiggvény-
terek (KC-terek) felett értelmezett B-gorbék és B-feliiletek felhaszndlasi lehetdségeit a kontrollpont-
alapu grafikus modellezésben.

Az 1. fejezet az elméleti hattér bemutatasara irdnyul. A felhasznélt eredmények és numerikus méd-
szerek, illetve ezek helyességének és hatékonysdganak vizsgilata [R6th, 2017]-ben megtaldlhatd, jelen
dolgozatban az innen 4tvett anyag 0sszefoglaldsdra toreksziink.

A targyalt numerikus médszerek egy része a kiterjesztett Csebisev-terek folott értelmezett, igyneve-
zett B-gorbék és B-feliiletek el6allitdsahoz sziikséges kever6fiiggvények és ezek derivaltjainak kiszami-
tdsdra irdnyul. Megval6sithaté tovabba a gorbék és feliiletek rendszdmndvelése (mely a hasznalt KC-tér
dimenziészamanak novekedését vonja maga utan), ezek felosztasa (az értelmezési tartomany tetszdleges
belsé pontja koriil), illetve a paraméteres alakban megadott gorbék és feliiletek kontrollpont-alapu egzakt
leirdsa B-gorbékkel és B-feliiletekkel (melyet egy, a KC-tér hagyomanyos és egyedi normalizalt B-bazisa
ko6zotti bazistranszformacio tesz lehetévé).

A 2. fejezetben egy OpenGL-t felhaszndlé C++ alkalmazast mutatunk be, melynek célja az elméleti
eredmények alkalmazasi lehetdségeinek szemléltetése. A felhasznaldi feliilet elemeit a Qt Widgets ke-
retrendszer biztositotta, a sajit grafikus elemeket viszont OpenGL segitségével rajzoltuk ki, igy a gorbék
és feliiletek megjelenitésének paraméterei testreszabhatdk (pl. hdny gérbepontnak megfelel6 adat legyen
tarolva a gorbékhez tarsitott vertex-pufferekben). Az ismertetett numerikus algoritmusok implementaci-
6janak parhuzamositdsara az OpenMP konyvtarat hasznéltuk.

Az alkalmazdasban olyan KC-tereket tudunk definidlni és kezelni, amelyek egy konstansegyiitthatds
linedris homogén differencidlegyenlet megoldésterének a megfelel$ intervallumra vald leszikitéseként
allnak el6. Egy ilyen differencidlegyenletet a felhaszndlé a gyokeinek (illetve ezek multiplicitdsanak)
megaddsaval tud bevinni a rendszerbe.

A 3. fejezetben példakon keresztiil mutatjuk be az alkalmazds haszndlatat, illetve a hatékonysdg
szemléltetése céljabdl néhany futdsidére vonatkoz6 mérési eredményt is ismertetiink.

Tl nagy dimenziészamok, illetve tuil kicsi értelmezési tartomanyok esetén sajnos nem elkeriilhetd
a numerikus instabilitds, a gyakorlatban viszont megfelel6en haszndlhaté az implementécid, mivel a fe-
lilleteket 4ltaldban kisebb darabokbdl allitjak els, melyeket megfelel6 folytonossdgi rend mellett 6ssze-
illesztve kezelnek a CAD-rendszerek. A mddszerek hatékonysdga az 4ltaldnossig ellenére sem jelent
gondot, viszont kevésbé j6, mint azon eljarasoké, melyek egy bizonyos fiiggvénytérre specializalédnak.

Koszonettel tartozom témavezetémnek, Réth Agostonnak, aki mind az elméleti eredmények megér-
tésében, mind a felhasznalt numerikus médszerek és a sziikséges OpenGL eljarasok implementéldsdban

jelent8s segitséget nyujtott.



1. fejezet

Elméleti hatter

Osszefoglalé: Bemutatjuk a felhasznalt elméleti alapfogalmakat és eredményeket, minden
esetben a megjelolt forrdsmiiveket kovetve. Az értelmezések, tételek és bizonyitdsok leirdsa
az adott miivekben haszndlt szerkezetet és jelolésrendszert koveti.

1.1. Kontrollpont-alapti modellezés

A grafikus modellezésben gyakran hasznélt technika, hogy gorbéket és feliiletdarabokat nem para-
méteres alakban, hanem kontrollpontok és ezekhez tarsitott kever6fiiggvények linearis kombinacidjaként
adunk meg. A kontrollpontok gorbék esetében tigynevezett kontrollpoligont, feliileteknél pedig kontroll-
halét alkotnak. Ezaltal a felhasznalénak lehetdsége van mddositani a gorbe vagy feliilet alakjat (az egyes
kontrollpontok helyének megvaltoztatasa altal), ugyanakkor megmaradnak a keverdfiiggvények jellegé-
bdl szdrmazd és a modellezésben hasznos tulajdonsagok (pl. adott rendi folytonossdg, a kontrollpontok
lokélis hatdsa, konvexitdsmegbrzés, hullimzas- és hodografcsokkentés, konvex burok tulajdonsag stb.).

Egy gorbét leggyakrabban a
c:la,b] =R’ §>2

n (1.1)
c(u) =Y pifi(u)

i=0
alakban adunk meg, ahol n. > 1, a p; € R® vektorok a kontrollpontok, az f; keversfiiggvények pedig
az [a,b] intervallumon értelmezett folytonos val6s fiiggvények, melyek normalizdltak, nemnegativak,
legaldbb n-edrendben folytonosan differencidlhatéak és linedrisan fiiggetlenek.

A feliiletek alakja tenzorszorzat jellegii:
s:[a,b] x [e,d = R®, §>3

s(u,v) = Z Z pij fi(u)g;(v).

i=0 j=0

(1.2)

Itt a p;; € R? pontok egy kontrollhdl6t alkotnak. Az u- és v-irdnyd keverSfiiggvény-rendszerek ez
esetben lehetnek akar kiilonb6z6 dimenzidészdmuak, illetve kiilonboz6 tipusiak is:

F={fi:la,)) =R} ,, G={gj:[c.d] — R};’;O.
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A kever6fiiggvények rendszere meghatarozza a gorbék és feliiletek tulajdonsagait, emiatt érdemes a
megfeleld fiiggvények megvalasztdsara kiilon figyelmet forditani. A gyakorlatban a leggyakrabban hasz-
nélt gorbék (feliiletek) az dgynevezett Bézier-gorbék (feliiletek), melyek esetében a keverdfiiggvények

az n-edfokud Bernstein-polinomok:

n

B= {Bn,i 0,1 > R, Bui(u) = <?>“i(1_“)m} |

1=0

: 1.1. 4bra. ilarmadfokl’; Bernstein—;olinomok (u €[0,1)) ‘

A teljesség igénye nélkiil ime néhany tulajdonsdg (részletesebb leirdsért 1d. [R6th, 2018], [Farin,
2002], illetve [Juhdsz, 1995]), melyeket éltaldban elvarunk egy keverdfiiggvény-rendszertdl, illetve az

7z

altala elddllitott gorbéktdl — hasonlé tulajdonsdgok fogalmazhaték meg a feliiletek esetében is:

1. Affin transzformdci6tdl valé fiiggetlenség: a gorbe legyen invaridns az affin transzformdcidkra

nézve, tehdt ha T : R? — R egy affin transzformdacid, akkor

n n
T(c(u) =T (Z piFi(U)> = ZT(Pi)Fi(U)a Vu € [a, b]
i=0 i=0
teljesiiljon. A gyakorlatban hasznalt kever&fiiggvények egységfelbontast alkotnak, azaz

n
> Fi(u) =1,Yu € [a,b].
i=0
Direkt szdmitdssal beldthatd, hogy ekkor a generdlt gorbék és feliiletek fiiggetlenek az affin transz-
forméacioktol.

2. Konvex bennfoglalds: ha az egységfelbontas mellett a fiiggvények pozitivak is, azaz
Fi(u) >0, Yué€a,b], Vie{l,2,..,n},

akkor a generalt gorbe mindig a kontrollpoligonja konvex burkdnak belsejében marad, hiszen az

egyes gorbepontok a kontrollpontok egy-egy konvex kombinacidjaként dllnak eld.

3. Monotonitds megdrzése: azért fontos, hogy a kontrollpoligon és a gdrbe vonalainak bejarasi irdnya
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mindig megegyezzen. Azt mondjuk, hogy egy
F={F;:[a,b] = R},

fiiggvényrendszer megdrzi a monotonitast, ha VA; € R esetén

A <A << A= ) NFi(w)
=0

novekvé fiiggvény (u € [a, b]).

4. Végpontbeli interpolacid: az intuitiv kezelhet&ség érdekében azt is elvarhatjuk, hogy a
n n
c(a) = ZpiFi(a) = po, illetve c(b) = ZpiFi(b) =DPn
i=0 i=0
egyenldségek teljesiiljenek, azaz a gorbe az elsé kontrollpontbdl induljon és az utolsé kontroll-

pontban érjen véget.

5. Linedris fiiggetlenség: ahhoz, hogy tetszdleges meglévs adatpontok interpolacidjat is biztositani
tudjuk, a fiiggvényeket tigy kell megvélasztani, hogy linedrisan fiiggetlenek legyenek.

A kutatasban ezért az ismert és gyakran el6fordulé fiiggvényterek (fiiggvényekbdl 4ll6 linedris vek-
torterek) esetében szoktak olyan bazist keresni, mely teljesiti a kever6fiiggvényektdl elvart tulajdonsa-
gokat is (tehat modellezésre alkalmas). Bar a Bézier-gorbék a legtobb célra megfelelnek, polinomidlis
jellegiik miatt bizonyos esetben pontatlanabb kozelitést engednek csak meg, mint mas fiiggvénytér (gon-

dolhatunk példaul arra, hogy a szinuszfiiggvény kozelitésére a polinomok kevésbé alkalmasak).

1.2. Kiterjesztett Csebisev-terek (KC-terek)

A [R6th, 2017]-ben leirtakat kovetve elevenitsiik fel a kiterjesztett Csebisev fiiggvényterek fogalmat.
Legyen n > 1 egy rogzitett egész szam és tekintsiik a ¢, ;(u) bazistiiggvényekbdl allé

Fof = {pni(u) :w €[, B} pno=1 (1.3)

rendszert, ahol ¢, ; € C" ([a, B]) és —00 < a < 3 < oc. Ertelmezés szerint (Id. [Karlin és Studden,
1966]) azt mondjuk, hogy az
Sq 1= (Fg?) = span (1.4)

(n + 1)-dimenzids fiiggvénytér kiterjesztett Csebisev-tipusd, ha
— barmely 0 < r < n egész szamra,

— barmely szigordan novekvo a < ug < u1 < ... < u, <  csomopontrendszerre,
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- tetszSleges {my})_, egész szamokra (multiplicitdsokra) melyekre teljesiil, hogy >, _,mi =
n+1,és

) T
— bérmely {fkl};;:rg’k 1o Val6s szdmokra

mindig 1étezik egy és csakis egy

n
f= ZAn,i‘Pn,i = S%”B, Ani €R, i=0,1,...,n (1.5)
i=0

fliggvény, mely kielégiti a Hermite-féle
FO%up) =&y, 1=0,1,0mp—1, k=01,..,r (1.6)

interpolacids feladat feltételeit és ezen egyenletrendszer egyiitthatomatrixanak eldjeltarté determindnsa
szigordan pozitiv barmely, a fentiekben leirt megengedett paraméterbedllitds esetén. A KC-tér értelme-
zését tekintve az 1 = ¢, o € S%’ﬁ feltétel nem sziikséges, jelen esetben viszont a konstansokat is az S?{’B
részévé tettilk annak érdekében, hogy minden bazisa normalizalhat6 legyen.

Zérushelyek szempontjabdl a definiciobol kovetkezik, hogy barmely nem azonosan nulla eleme Sy, B
nak legfeljebb n-szer valik nulldva az [«, (] intervallumon.

A tovéabbiakban Fj, P ra az Sﬁ"g hagyomdnyos bdzisaként hivatkozunk, és feltételezziik, hogy a de-
rivdltak n-dimenziés DSY” = { M fe S&P } tere szintén KC-tipusi az [«, 3] intervallumon. A
[Carnicer és Pena, 1995]-nek az 5.1. tételét, illetve a [Carnicer et al., 2004]-nek a 4.1. tételét felhasz-
ndlva kijelenthetjiik, hogy az Sﬁ"g vektortérnek ezen feltételek mellett 1étezik szigordan teljesen pozitiv
bézisa is (azaz olyan bdzisa, melynek minden kollokéciés matrixdnak minden minorja szigordan pozitiv).
Mivel a konstans 1 = ¢,, o fiiggvény eleme S%’B -nak, az emlitett szigordan pozitiv bazis normalizalhato,

tehdt a vektortérnek van egy egyedi normalizdlt B-bazisa (igynevezett NB-bazisa):

n

B = {bm(u) ju € [ajﬁ]} . (1.7)

1=0

A [Carnicer és Pefia, 1995] 5.1. tételének és a [Mazure, 1999] (3.6)-o0s egyenletének megfeleléen a
B2 bézis az egységfelbontds Qo gbni(u) =1, Yu € [o, ]) mellett teljesiti a kovetkez6 tulajdonsa-

gokat is:
bn0(@) = bnn(8) =1, (1.8)
0 () =0, j=0,1,.i—1, b (a) >0, (1.9)

A tovabbiakban bemutatott algoritmusok érvényesek barmilyen S%’B KC-tér esetén amely teljesiti a
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fentebbi feltételeket, az implementaciéjukban viszont feltételezziik, hogy S%’B az (n + 1)-edrendd

n+1
> o) =0, v €R, uela,f] (1.11)
=0

konstansegyiitthatés homogén linedris differencidlegyenlet megoldéstere.
A megoldasteret a differencidlegyenlet karakterisztikus polinomjanak (esetleg magasabb rendd) gyo-

kei 4ltal meghatdrozott hagyomdnyos bazisfiiggvények feszitik ki. A karakterisztikus polinom

n+1 )
Prnyi1(z) = Z%zz, zeC (1.12)
i=0

alakba irhat6 €s mivel biztositani akarjuk, hogy v, 0 =1 € S%ﬁ , meg fogjuk kovetelni, hogy 2 = 0 a
karakterisztikus polinomnak legalabb egyszeres gyoke legyen.

A megoldastér eltoldsfiiggetlen, C*° ([«, 5]) osztalyu és a megfelelden kicsi 8 — « € (0, [,,) hosszi-
sagu intervallumra vett leszlikitése KC-tipust, ahol [, > 0 az ugynevezett kritikus hossz, melyet a

kovetkez8képpen tudunk meghatarozni (Id. [Carnicer et al., 2004, 3.1. kijelentés]):

— jelolje
Wi o (0) = [0 ()] u € [0, f] (1.13)

az (1.11) azon sajétos

n

Un,i ‘= Zpi,k‘pn,k € Sgwg') {pi,k}zzo - Rv i = 07 17 s T (114)
k=0

integrdljainak Wronski-féle matrixat, melyek teljesitik a

Dia)y=0, j=0,1,..,i—1,
L, (1.15)
WD(BY =0, j=0,1,.n—1—i

kezdeti feltételeket, tehat a {v,;(u) : u € [a, 5]};", egy bikanonikus bazis az [« 3] intervallum
felett, igy hogy az (1.13)-as Wronski-féle matrix u = «-ban egy alsé haromszogmatrix, az atlén

pozitiv (egység) elemekkel;

— tekintsiik a kovetkezd fliggvényeket (Wronski-féle determinansokat):

wpi(u) = det W[Un,ivyn,i+l7~-~avn,n](u)7 1= L%J +1,...,n, (1.16)
Oni(u) = (=1)"" D det Wiy, o (=), i= 2]+ 1., (1.17)
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és értelmezziik az

lp = min  min {|u — | : wy;(u) =0 vagy Oni(u) =0, u#a} (1.18)

i=] % |+1,...m
kritikus hosszt (irhatjuk, hogy [,, = 400 abban az esetben, ha az (1.16)-os Wronski-féle determi-
nansoknak nincs a-t6l kiilonb6z6 valds gyoke, mitdbb [, végtelen, ha az (1.12)-es karakterisztikus
polinomnak csak valds gyokei vannak, illetve véges, ha a karakterisztikus polinomnak tényleges -

nem eltlind képzetes résszel rendelkezd - komplex gyokei is vannak).

A derivaltak DSg’ﬁ terének kritikus hosszét jeldlje I/,. Ahhoz, hogy biztositsuk az NB-bazis 1é-
tezését S27-ban (Id. [Carnicer et al., 2004, 4.1. tétel]) a tovabbiakban mindig feltételezziik, hogy
€ (a,a+1). AB—a € (0,1]) intervallumhossz egy alakparaméternek is felfoghat6. Az egyér-
telmtiség érdekében I, és I/, mellett az [ (S%”B ) és I/ (S?{’ﬁ ) = (DS%’ﬁ ) jeloléseket is haszndlni
fogjuk.

A hagyomanyos bdzis alakja megkaphat6 a gyokokbdl a differencidlegyenletek megoldasandl meg-
szokott médon:

— ha zp € R egy m-szeres gyoke az (1.12)-es karakterisztikus polinomnak (m > 1), akkor a hozza

tartozé bazisfiiggvények uFe?ot alakdak (k = 0,1, ...,m — 1),

—hazg=a+bic C\R (a,b€R, b#0, i> = —1) egy m-szeres gydke a polinomnak, akkor az

a — bi szintén m-szeres gyoke és a 2m darab gyok altal meghatarozott bazisfiiggvények:

{ukea“ cos(bu), uFe™ Sin(bu)}:i)1 , U € [a, Bl
A bemutatott algoritmusok nem feltételezik, hogy (1.12) egy péaros vagy pératlan fiiggvény, de ha
ezek egyike teljesiil, akkor az 4ltala meghatdrozott KC-tér tiikkrozésinvaridns is lesz. Tekintsiik a [R6th,
2017]-ben bemutatott példakat. Ha {wy, },_; paronként kiilonbozd valds szamok és az [«, (3] értelmezési
tartomany hossza megfelel6en rogzitett, akkor a

Pn+1 (z) = Zn_H?

n
Pnt1)2(2) = 2"t H(22 + W) TE lletve
k=1

n
Pinsry2(2) = 2" [ (2 =)t h
k=1

karakterisztikus polinomok altal meghatdrozott tiszta polinomidlis, kevert algebrai-trigonometrikus és
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algebrai-hiperbolikus KC-terek:

]}ngﬁ = <P7(LX76> = <{1,u,...,un Tu € [OZ,B]}>;
dim PGP =n 4 1,

A']I‘n’(ﬁJrQ) = <77°‘B U {u cos(wyu), u! sin(wku)}n’ o >,

k=1, I=0

dim ATnii+2) (n+1)2,

illetve

n, n—k
7/8 . QB l l - ’
AHn(n+Q) <73 U {u cosh(wgu), u Slnh(wku)}k:L . >,

dim AHnEﬁ—i—Q) (n+1)2%

melyek nemcsak transzlacié-, hanem tiikrozésinvaridnsok is és természetesen rendelkeznek egyedi nor-
malizalt B-bazissal.

Ha az NB-bazisfiiggvényeket ismerjiik, megfelel6 szamu kontrollpontot felvéve a szokvanyos médon
eléallithatjuk az dgynevezett B-gorbéket és B-feliileteket.

1.1. Ertelmezés (B-gorbe). A
n 5—1
w) =Y pibnilu), uelo,fl, pi=[pl]  eR (1.19)

konvex kombindciét n-edrendil B-gorbének nevezziik, ahol [p;];"_, a kontrollpoligont jeldli.

1.2. Ertelmezés (B-feliilet). Ha

Ny

Bf{:’ﬁr = {bnmr(ur) DUy € o, By } o r=20,1
ip=

jeloli két KC-tér NB-bazisat, akkor az (1.19) tipusu gorbék tenzorszorzataként értelmezhetjiik az

ng ni

Sno,nl anul Z Z pzo,zl 0,10 uO) bnl,zl (ul) (120)
i0=011=0
1P 3
up € [ao, Bo], u1 € [o1, B1], Pig,iy = [P@'O,il]lio ER
B-felilletet, ahol a [pjy.;, ;" ¢";, o mdtrix alkotja a kontrollhdl6t.

10
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1.3. Az NB-bazisfiiggvények (nullad- és magasabb rendii derivaltjainak)
eloallitasa

Amint definidltunk egy Sﬁ"g KC-teret az Fy, 8 hagyomdnyos bdzisdnak megadasa éltal (mely a ka-
rakterisztikus polinom gydkeinek rogzitésével torténik), eld kell allitanunk a B, B egyedi normalizalt
B-bazisat. Az NB-bazisfiiggvények (nullad- €s magasabb rend(i) derivaltjai ugyanis nemcsak a gorbe- és
feliiletpontok meghatarozdsaban, hanem a kés6bb bemutatott algoritmusok szamitdsaiban is megjelen-
nek. A tovabbiakban az NB-bdazis [R6th, 2017]-ben dsszefoglalt felépitési eljarasat mutatjuk be.

Az S3P KC-tér esetében a 8 — o € (0,1,) feltétel teljesiilése biztositja a By NB-bézis 1étezését,
ennek felépitése ekkor a [Carnicer et al., 2004]-ben leirt eljaras segitségével valdsithaté meg.

Tekintsiik a bikanonikus {v,;(u) : u € |a, B]}?:O bazist, melyet a az (1.15)-6s feltételek 4ltal
meghatdrozott (1.14)-es vonalintegralok alkotnak. Legyen Wi, 4, 1 v, 0] (8) a forditott sorrendbe
rendezett {vnn—i(u) : u € [ov, B] }?:0 rendszer © = (3-ban vett Wronski-féle matrixa és hatdrozzuk meg

ennek az
L . U = W[U'n,nﬂ)n,n—la--'vvn»o] (B)

Doolittle-féle LU felbontasat ahol L egy alsé haromszogmatrix egyesekkel az atldjan, U pedig egy nem-
szingularis fels6 hdromszogmatrix.

Szamitsuk ki ezek inverzét:

Ho0 Mol Hon Mo O -0
U1 0 wig1 - Mipn [ ALo A 0
0 0 Tt Hnn )\n,O )\n,l ce )\n,n

melyek segitségével fel tudjuk épiteni az NB-bazist:

By = {bui(w) = Mniobnilu) s w e [, B} (1.21)
ahol
bun(w) Bun1(w) -+ buo()] = ona(u) vnpo1(u) o wno(u)| U
illetve .
Mo Ao - )\n,o}:L_l'[l 0o --- 0} .

Ha az (1.12)-es karakterisztikus polinom péros vagy pdratlan, akkor az &ltala meghatarozott S&P

KC-tér invarians a tikkrozésekre, igy ebben a sajatos esetben a
bpi(u) =bpp_ila+p—u), Yuela,p], i=0,1,.., L%J

szimmetria is teljesiil, ami azt jelenti, hogy elég csak a bazisfiiggvények felét meghatarozni (1.21)-ben.

1.3. Tétel (B-bazisfuggvények derivaltjai, [R6th, 2017, 2.3. tétel]). Az (1.21)-ben megjelend bdzisfiigg-

11
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vények (nullad- és magasabb rendii) derivdltjainak kiszdmitdsa a kovetkezd szdmitdsra redukdlodik:
Bim-i() = Xio) o (w)

_/\ZOZMTlUnn r
—)\Zozuman Tkgp , Yu€ela,B], i=0,1,...,n. (1.22)
r=0

Ha a KC-tér tiikkrozésinvarians, akkor az (1.22)-es képletet csak az 1 = 0,1, ..., L%J indexekre kell
alkalmazni, mivel ez esetben teljesiil, hogy:

bgg(u) (=179 (a+B—w), Yuela,f], i=0,1,.., |2]. (1.23)

nnz

1.4. Példa (Egy kilencdimenzids tikrozésinvarians KC-tér). Tekintsiik a
v () + 607 (w) + 90 (u) + 403 (u) =0, ue %, 7]
differencidlegyenletet, majd bontsuk tényezdkre a karakterisztikus polinomjat:

po(z) = 2% 4+ 627 4+ 92° + 423
=23 (z2+1)2 (z4+22), z e C.

A gyokok és multiplicitdsaik dltal meghatdrozott bazisfiiggvények az

AT RE_ (77E)

<{9080 =1, ps1(u) = u, @g(u) =u?
308,3(’“) = COS(U)v @8,4(“) = Sin(u)a ©8,5 (u) = UCOS(U),

ralu) = usin(u), paslu) = cos(2u). gas(u) =sin(2u) } )

(1.24)

9-dimenzids algebrai-trigonometrikus teret allitjdk el (mely tiikkrozésinvaridns is, mivel a karakteriszti-
kus polinom pératlan). Ha bemenetként megadjuk pg (esetleg magasabb renddi) gyokeit, az alkalmazas
ki tudja szdmolni és meg tudja jeleniteni a KC-térhez tartozé6 NB-bazisfiiggvényeket, melyek az 1.2.
dbran lathatok (a fiiggvényeket az alkalmazds segitségével jelenitettiik meg, majd utéfeldolgozdsként

cimkéztiik).

1.5. Példa (Egy hatdimenzios KC-tér, mely nem tiikkrozésinvaridns). Tekintsiik a

0@ (u) — 60 (u) + 130 (1) — 120®) (u) + 40P (u) = 0, v e [-1,1]

12
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bs.o

1.2. dbra. Az (1.24)-es AT, >’ KC-tér NB bizisfiggvényei.

differencidlegyenletet, melynek karakterisztikus polinomja:
2 2 2
pe(z)=2"(z—1)"(2—2)", z€C.

A gyokok altal meghatarozott bazisfiiggvények az

AE; " = <{905,0(u) =1, ps51(u) = u, ps2(u) =e€", @53(u) = ue",
(1.25)

o) =, sslu) = ue'} )

6-dimenzids vegyes algebrai-exponencidlis teret allitjdk eld, melynek NB-bdazisfiiggvényei az 1.3. dbrdn
lathatdk. Mivel a karakterisztikus polinom nem is paros és nem is paratlan fiiggvény, az el64ll6 tér nem

lesz tiikkrozésinvaridns, amint az a bazisfiiggvények alakjabdl is latszik.

bs.0

1.3. dbra. Az (1.25)-6s AE; ' KC-tér NB bazisfiiggvényei.

1.6. Példa (A 8 — « intervallumhossz alakvaltoztatdsi hatdsa). Tekintsiik a

p(z) =22+ 22 = 2(22 +1) (1.26)

13
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karakterisztikus polinom 4ltal generalt
’]I‘?’B = ({1, sin(u), cos(u)}) (1.27)

elsGrendi trigonometrikus teret, melynek kritikus hossza I] = 7. Legyen o = 0, a /3 végpontnak pedig
feleltessiik meg rendre a {0.1, 1, 1.5, 2} halmaz elemeit. Rogzitett kontrollpontok esetén a kiilonbo-
20 [ értékeknek megfeleld terek NB-bazisfiiggvényei dltal generalt gorbék alakja kiilonbozo (a f — «

intervallumhossz tehét alakparaméternek foghat6 fel). Ezt a hatdst szemlélteti az 1.4. dbra.

1.4. dbra. A § paraméter hatdsa az (1.27)-es
KC-tér altal generalt gorbe alakjara. A megjelenitett (k6z6s kontrollpontokkal rendelkezd) gorbék
esetében felhasznalt értékek: 51 = 0.1, By =1, =15, B4 =2.

1.4. B-gorbék és B-feliiletek rendszamnovelése

A rendszamnévelés célja, hogy a kontrollpontok szdma ndjon (azaz finomabb alakvéltoztatast tud-
junk megengedni a felhaszndlénak) igy, hogy az 4j kontrollpontok altal leirt gorbe vagy feliilet az erede-
tivel megegyezd maradjon. A kovetkezokben a [R6th, 2017]-ben lefrtak mentén haladva egy numerikus
eljarast targyalunk, amellyel B-gorbék és B-feliiletek esetén megvaldsithaté a rendszamnovelés.

Tekintsiik az S%° és Szfl KC-tereket dgy, hogy 1 € S¥° Szfl és tételezziik fel, hogy
a derivdltak DS’ és Dngl terei is KC-tipusdak az [a, 8] intervallumon, azaz 0 < 8 — a <
min {l’ (Sﬁﬁ) U <Szf1) } A terek NB-bazisait jelolje {byi(u) : u € [a, B]}7_, €5 {bns1(u) :
u € [a,ﬁ]}?:ol.

A kovetkez0 tétel a [Mazure és Laurent, 1998] 3.1. tételének kissé atalakitott valtozata (I1d. [Roth,
2017, 2.7. lemma]), melyben az [«, 3] értelmezési tartomany mindkét végpontjat figyelembe vettiik an-
nak érdekében, hogy a megjelend maximalis derivalasi rend a lehet legkisebb legyen (ez a hatékonysag

és numerikus stabilitds miatt is fontos).

1.7. Tétel (Altalanos rendszamnovelés). A fentebbi jeloléseket felhaszndlva, a c,, n-edrendii B-gérbére

14
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Sfenndll, hogy

n n+1
cn(u) =Y Pibni(w) =Y pribuyri(u) = cnp1(u), Vu € [a, ],
1=0 i=0

ahol 1y = Po, P1,nt1 = Pn €5

by (@) (@) n
Pi1: = <1 - (Z)’i Pi-1+ Q)’ipza 1= 17 27 ceey [EJ ; (128)
bn+1,i(a) bn+1,i Oé)
B0 o
Pint+1—i = Lz(lg)pn—z + 1-— L’L(IB) Pn+1-i, i = 17 27 () nt ! . (129)
n+1n+1—1 n+1n+1—1

Bar az 1.7. tétel érvényes barmely olyan egymadsba dgyazott 1 € S%’B C ngl terek esetében,
melyekre a DS és Dngl terek is KC-tipustak, az implementacidban feltételezni fogjuk, hogy a ma-
gasabb rendd SZfl tér is egy konstansegyiitthatés linedris homogén differencidlegyenlet megolddstere.
Természetesen az 1.7. tétel kijelentése kiterjeszthet6 az (1.20) tipusu feliiletek rendszamnovelésére is,

amit az alkalmazéssal szintén elvégezhetiink.

(a) (b) (©)

1.5. dbra. Egy B-gorbe és kontrollpoligonja rendszdmndovelés el6tt (a) és rendszamndvelés utdn (b). A
harmadik abrat (c) az el6z6 kettd egymasra tételébdl kaptuk. A gérbe mogotti vegyes
algebrai-exponencialis KC-teret meghatdrozé p4(z) = 23(z — 1) kiinduldsi karakterisztikus polinom
esetében a 0 gyok multiplicitdsat eggyel noveltiik. Lathatd, hogy mig a kontrollpontok szama eggyel nd,
a gorbe alakja valtozatlan marad.

1.5. B-gorbék és B-feliiletek felosztasi algoritmusa

A kovetkez8kben a B-gorbék és B-feliiletek valamely, az értelmezési tartomény egyik belsé pont;ja-
nak megfeleld gorbepont (illetve paramétergorbe) koriili felosztasat szeretnénk megvaldsitani. Ismertet-
jiik a [R6th, 2017]-ben bemutatott mddszert.

Minden normalizélt B-bazisnak megfelel egy ugynevezett B-algoritmus az (1.19) tipusd B-gorbék
felosztasdra, azaz egy tetszGlegesen lerdgzitett v € («, §) paraméterérték esetén létezik egy, a klasszikus

Bézier-gorbék de Casteljau algoritmusdhoz hasonl sorozatos saroklevagédsokra épiil rekurziv felosztasi
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eljaras, mely a p?(fy) =p;, ¢ =0,1,...,n kezdeti feltételekbdl indul €s meghatarozza a

PI) = 1= Pl )+ () LI, i=01 =], j=12n  (130)

n—jamn

felosztasi pontokat, ahol a {gf : e, 8] — [0, 1]}2.:0 =1

ban nem ismert, vagy specidlis esetek (példdul Bézier-gorbék) kivételével bonyolult nemlinedris alakot

keverdfiiggvények explicit zart alakja 4ltala-

oltenek, még kis dimenziészamui KC-terek esetén is.
Legyen Si” egy KC-tér, gy hogy 1 € S2” és B — a € (0,1,), tovabbd legyenek By :=
{bri(u;o,y) : u € [a,v]}?zo és BY? = {bni(u;v,B8) + u € [7,5]}?:0 a leszikitett Syy7 =

] és STP .= span]-';ly”8 = span]-"ﬁ’ﬂ ‘[ 5 KC-terek NB-bdzisai. Te-
o,y s
kintsiik a kovetkezs, (1.30)-as eljarasnak megfeleld hdromszogséma 4tlés {A;(7y) := pf)(“/)}” és

i=0
{Qi (v) = P?ﬂ(v)}?zo bejegyzéseit:

spanFe? = spanFo’

Po =: Ao(7)

P1 ps(7) = A(v)

P2 pi(v P3(7) =: Xa(7)

: ' Py (V) = An(7) = 00(7)
Pn—2 Py _o(7) P 5(7) = 0, 2(7)

Pn-1 P, 1(7) = 0,1(7)

Pn =: 0,(7)

Ezeket a pontokat konvex médon kombindlva a By,"” és BZ”B bazisok fiiggvényeivel, a B-gorbe a bal
és jobb oldali

L,(u) == Z)\i(“/') b i(u; o, y) = cp(u), Yu € [a,9], (1.31)

=0

illetve n
ry(u) = 0;(7)  bni(us v, B) = ca(u), Yu € [y, f] (1.32)

=0

ivre oszthat6, melyekre teljesiil az is, hogy:

19 (w) = ) (u), Yu € [a,7], (1.33)
v (u) = e (), Vu € [y,8], (1.34)

minden j > 0 derivalasi rendre.
A kovetkezSkben ismertetjiik a [R6th, 2017]-ben bemutatott rekurziv eljarast, mellyel kiszdmithatok

a {2(7)}io & {:(7)}ig oszopontok a {& : [a, 8] — [0.1]}
=
nélkiil is.

Js m ,
keverdfiiggvények ismerete
0, j=1

16
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1.8. Tétel (Altaldnos B-algoritmus). Tetszélegesen rogzitett v € (a, B) paraméterérték és a

Ao(7) = cnla) = po, (1.35)
An(7) = cn(7) = 00(7), (1.36)
2,(7) = cn(B) = pn (1.37)

kezdeti feltételek esetén az ismeretlen {\;(~)}"_, és {0;(7)}i, osztépontok meghatdrozhatdk a kovet-
kezd rekurziv képletek segitségével:

i—1
1 ; i . n—
M) = =5 (@)=Y A0 b | =115 (138)
b (04 @, ) j=0
1 i — % .
)\n I(A/) (1)— C'ELZ) (’Y) - An—j(’\//) : bq(f),7)n—](f)/7 057’Y> , 1= 17 ceey L%J ) (139)
bn,nfi (’Y; Q, 7) 7=0
1 i—1
i\
i—1
1 ; i . e
e ()= | DB =0, (1) (BB | i=1, 5] (14D
nn z(ﬁ i /6) Jj=0

Bizonyitds. Azismeretlen {\;(v)}" és {0,(7)}i- osztépontok kiszamitdsa visszavezethets az (1.33)-
as és az (1.34)-es azonossagok, illetve az (1.8) — (1.10)-es Hermite-féle végpontbeli feltételek egyiittes
alkalmazdsdra, melyeket a By, B BEY lletve B)” bazisok egyarant teljesitenek.

Példaul az (1.35)-6s kezdeti feltétel az (1.19)-es és az (1.31)-es B-gorbék végpontbeli interpolacids
tulajdonsagabol ad6dik, mivel

n n
= pi-bnile;e,8) =po=Xo(7) = D A7) bnles a, ) = L ().
i=0 1=0
Ugyanakkor minden¢ = 1,2, ..., L%J derivélasi rendre fenndll a bff )i(a; a,7y) > 0 egyenlGtlenség,

illetve hogy

c(a) = 1{(a)
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ahonnan kovetkezik az (1.38)-as képlet a \;(y) osztépontra. A tobbi rekurziv osszefiiggés hasonléan
igazolhat6. Vegyiik észre, hogy ezek mindegyike igaz lenne barmely ¢ € 1,...,n derivdlasi rendre. A
tétel kijelentésében szerepld lesziikités célja csak az, hogy a kiértékelendd legmagasabb derivéldsi rend

a lehetd legkisebb maradjon (a hatékonysag és stabilitds érdekében). |

(a) (b)
1.6. dbra. Az A’]I‘Z’§ = ({1,u,u? sin(u), cos(u) } ) algebrai-trigonometrikus KC-tér folott értelmezett

negyedrend(i B-gorbe felosztdsa a v = & paraméterért€knél. Az (a) dbrdn az eredeti gorbe €s ennek
kontrollpoligonja 14thatd, a (b) dbran a felosztds utani bal és jobb oldali iv, kiilénbdz6 szinekkel.

1.6. Bazistranszformacio KC-terekben

Szeretnénk felépiteni azt a bazistranszformaciét, amely az S%P KC-tér BY” normalizdlt B-bazisét

annak 72 hagyomdnyos bézisdra képezi le (ahol 3 — o € 0,0)):

n n,n n
. — n . .
st =[]0 o [pestw)] . Vuelansl (1.42)
A kovetkezd tétel egy hatékony médszert ad az ismeretlen [t} J]? g j—o Crtékek kiszamitasara.

1.9. Tétel (Hatékony bazistranszformacio, [Roth, 2017, 2.11. tétel]). Az eldbbi jeloléseket haszndlva

az (1.42) bazistranszformdcio [t} j]?;g =0 mdtrixdnak elemei meghatdrozhatok az aldabbi rekurziv ossze-

fiiggésekkel:
1 n
= —— |9 b)), G =12, 5] (1.43)
S ) [ -5 | 2
illetve
tn —7 NN SO t kb ) ) ]: 1727"'7 \‘ J ) (144)
im—j — nz i,n—k“nn— k
bﬁf% S(8) 2

ahol a kezddelemek {ty ; = 1}, {t}y = @n,i(a)}jzl és {t, = eni(B) ),
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Bizonyitds. Az (1.43)-as és az (1.44)-es Osszefiiggések helyessége belathatd, ha a
On.i(u thkbnk , Yuelw,f], i=1,..,n

fuggvényegyenloségeket rendre 7 = 1, ..., L%J—edrendben derivéljuk, majd az u = «, illetve u = 3
paraméterértékeknél alkalmazzuk az (1.8) — (1.10)-es végpontbeli feltételek valamelyikét. Példaul v = «

esetében irhatjuk, hogy
n ) 8) 7
M) =Yt =2 Y el (@) Ztkbnk )+ 1565(@),
k=0 k=0

ahol bg; ) (a) > 0. Tehdt a t;; elemek megkaphatok a megfeleld kivonds €s osztés elvégzésével. |

Ha a béazistranszformdaciés matrix rendelkezésiinkre all, a hagyomdnyos bézis fiiggvényében paramé-

teres alakban megadott gorbék és feliiletek egzakt lefrasara is lehetdség nyilik.

1.10. Tétel (Gorbék egzakt leirasa, [Roth, 2015]). Az (1.19) tipusii B-girbéket felhaszndlva, a
n
=> Aigni(u), u€la,fl, NeR’, §>2 (1.45)
hagyomdnyos paraméteres alakban megadott gorbére teljesiil, hogy
n
c(u) = cn(u) = > pjibn;(u), Yu € [a, ],
j=0

ahol .
R O Y % R

7 2oz

1.11. Tétel (Feliiletek egzakt lefrasa — az el6z0 tétel kiterjesztése [Roth, 2017]). Legyen

.7:7?:757' - {Sonr,ir (uy) :up € [ar,ﬁr]} o Pn0=1

a hagyomdnyos, illetve
Bg:ﬁr - {bn,,,jr (up) @ uy [aT,BT]}] o

]nr, Ny

az egyedi normalizdlt B-bdzisa az Sﬁf’ﬁ " KC-tereknek (r = 0, 1), valamint jelolje [t”r 120, =0

(2 jr
reguldris négyzetes mdtrixot, mely a By," By fﬁ‘:’ﬁ "-be alakitja. Tekintsiik tovdbbd az

azta

T
s(ug,u1) = |8%uo,u1) s (ug,ur) sQ(uo,ul)} € R3, (uo,u1) € [a, Bo] X [a1, P1] (1.47)
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feliiletet, ahol

o—1 1 Ny
ﬁwwﬂ=ZIN§Mﬁwwmw)a@Ll:m&

¢=0 r=0 \i,=0

Ekkor (1.20) tipusti B-feliileteket felhaszndlva az (1.47)-es feliiletre teljesiil, hogy

no ni

s(uo, U1) = Sng . (U0, u1) = Z Z Pjo.j1 bnojo (10) bny gy (u1), V(ug,u1) € [, Bo] X [a1, B1l,
J0=0j1=0

2 o L
ahol a pj, j, = [p§07j1] —o € R? pontokat meghatdrozé koordindtdk

o—1 1 o
TR )1 (O SRCH IR a5
¢=0 r=0 \i,=0

Az (1.19) és (1.20) tipusu B-gorbéket és B-feliileteket felhasznédlva az (1.46) — (1.48)-as képletek
felhasznéldsaval a bemutatott bazistranszformacié felhasznalhaté olyan hagyomanyos paraméteres alak-
ban megadott gorbék és feliiletek egy nagy csalddjanak egzakt lefrdsdra, melyek fontosak lehetnek az
alkalmazott matematika szdmos teriiltén. A bemutatott mddszereken keresztiil az alkalmazéissal kezel-
heté KC-terek magukba foglalnak olyan fiiggvényeket, melyek gyakran hasznalt geometriai objektu-
mok leirasat is lehetdvé teszik, mint példaul ellipszisek, epi- és hipocikloidok, epi- és hipotrochoidok,
Lissajous-gorbék, térusz csomok, rézsa-gorbék, hiperboldk, ellipszoidok, archimédeszi és logaritmikus

7z

spirdlok stb. Az 1.7. dbra egy térusz B-feliileti foltokbdl felépitett egzakt eldallitdsat tartalmazza.
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1. FEJEZET: ELMELETI HATTER

1.7. dbra. Egy térusz egzakt leirdsa és megjelenitése B-feliiletdarabokkal (az egyik feliiletdarab
kontrollhal6ja kékkel kiemelve). A megjelenités €s a kontrollpontok helyének kiszdmitdsa a bemutatott
alkalmazas segitségével tortént.
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2. fejezet

Implementacios részletek

Osszefoglalé: Bemutatjuk az alkalmazds felhasznl6i feliiletét, ismertetjiik a felhasznalt
keretrendszert és kényvtdrakat, illetve bemutatjuk az 1. fejezetben tdrgyalt médszerek imp-
lementaciojdnak szerkezetét.

2.1. Az felhasznaloi feliilet felépitése

Az alkalmazds inditdsakor megjelend f6 képernydn egy iires szintér és egy jobboldalon elhelyezkedd
eszkoztar fogadja a felhaszndlét. Az eszkoztaron a megjelenitési paraméterek bedllitdsa mellett lehetSség

nyilik d4j gorbék vagy feliiletek hozzaadasara, mentésére, torlésére, illetve mar meglévok (vagy egy teljes

gylijtemény) betoltésére.

CAGD with EC Spaces __, [] X

View Surface

Setup EC Space U Setup EC Space V

Update Control Points For
Exact Description

Always Show Control Net

Show Normals

Show Isoparametric Lines
Material: Ruby -
Normals' Color:

Isoparametric Lines' Color: | ...

Order Elevation:

Zero to Insert:

Re: 0.0000 =
u
abs(im): 0.0000 =
v
Multiplicity: | 1 -
U Subdivision:
0.0000 << | 0.5000 < < 1.0000
Go
V Subdivision:
0.0000 << | 0.5000 2 < 1.0000

Go

¥ Delete surface | || save Surface (File)

2.1. abra. F6 képerny®, rajta egy feliileti folt és a kontrollhdléja
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2. FEJEZET: IMPLEMENTACIOS RESZLETEK

Az eszkoztar négy fiillel rendelkezik, ezek koziil mindig azok aktivak, amelyeket a szintéren kijelolt
elem meghataroz. Ha nincs semmi kijelolve, akkor csak a Nézet (View) fiil aktiv, ha egy feliiletdarab van
kijelolve, akkor a Feliilet (Surface) is aktiv lesz (1d. 2.1. dbra), ha egy gorbét jeloliink ki, akkor a Feliilet
helyett a Gorbe (Curve) fiil lesz aktiv. Ha a gorbének (feliiletnek) egy kontrollpontja a kijeldlt elem,
akkor pedig a Pont (Point) fiil is aktiv lesz az el6bb emlitettek mellett. A kovetkez6kben bemutatjuk az
eszkoztar nyujtotta bedllitasi lehetdségeket.

2.1.1. A Nézet (View) fiil

A 2.2. dbran l4that6 Nézet fiil a globdlis beallitdso- View

Curve
kat tartalmazza, ezért nem valik inaktivvd még akkor
sem, ha semmi sincs kijel6lve. Default View Center Selection
A tetején talalhaté két gomb elGsegiti a kamerané- Line Width: 1.000 =
zet eredetire valé visszadllitdsét, illetve olyan eltoldsat, _ ) _
] - Line Width For Selections: | 2.500 -
melynek kovetkeztében az aktudlisan kijelolt elem ko-
£ . 117 . . . Division Point Count a
zépre keriil. Ezek alatt bedllithatjuk a vonalak 4ltal4- e W 100 v
nos vastagsagdt, illetve a kijel6lt elemhez rendelt vo- Division Point Count 30 -
. ( L o . For Surfaces: -
nalvastagsdgot, melyet célszerli az el6z6nél valamivel (for each direction)
nagyobb bedllitdson hagyni, hogy a kijeloltség érzetét lsomarametric Line Count (g -
keltse. Bedllithatjuk még az osztépont-szdmokat egy- For Surfaces:
. . ) (for each direction)
egy gorbe és feliileti folt megjelenitéséhez (ti. két osztd-
e .. . Control Lines’ Color:
pontot egyenes szakasz kot Ossze, a gbrbe vagy feliilet
csak az egyes osztépontokban van kiértékelve). Bedl- Scene Background Color:
lithatjuk a kontrollpoligonok és -halok szinét, illetve a
: . soz s 2 P PP 1, n, :
teljes megjelenitési vdszon héttérszinét is. - R - AT
A fiil als6 részén taldlhaté gombok tj elemek 16t- £ Add Surface £ Load Surface (File)

rehozésat, ezek fajlbol vald betoltését teszik lehetové : ; :
[} save Configuration To File

illetve lehet6ségiink van a teljes konfiguracié lemen- _ : : :
£ 2 Import Configuration From File
tésére vagy fajlbdl vald betoltésére is. Az alkalmazds

minden ki- és bemeneti dllomdnya szdveges, az 4ltala

reprezentalt grafikus vagy matematikai elem konfigura-

cidjahoz sziikséges egyiitthatokat és koordinatakat tar-

talmazza a megfeleld sorrendben, fehér karakterekkel

elvdlasztva (a felhaszndlénak nem sziikséges ismerni az

egyes fajlok szerkezetét, viszont elnevezési konvencié-

val — példaul kiterjesztés megadasaval — jelolheti, hogy

melyik kimentett f4jl mit tartalmaz).

2.2. abra. Nézet (View) fiil
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2. FEJEZET: IMPLEMENTACIOS RESZLETEK

2.1.2. A Gorbe (Curve) fiil

A Gorbe fill a 2.3. 4bran lathaté. Olyan bedllita-
sokat tartalmaz, amelyek az aktudlisan kijelolt gorbére
vonatkoznak (és a szintér tobbi elemét nem befolyasol-
jék). Ha az aktudlis elem nem egy gorbe (illetve nem
egy gorbének kontrollpontja), akkor ez a fiil inaktiv,
ami egyben az is jelenti, hogy ha el6zdleg ki volt je-
I6lve, akkor az eszkoztar visszaugrik a Nézet fiilre.

Az els6 gombra kattintva azon KC-teret tudjuk be-
allitani (I1d. 2.1.5. pont), amely folott a gorbe értelme-
zett, a masodik gomb pedig az egzakt lefrdshoz sziik-
séges paraméteres alak bedllitasara szolgal (1d. 2.1.6.
pont).

Jelolonégyzetek segitségével bedllithatjuk, hogy
mindig 14that6é legyen-e a kontrollpoligon (nem csak
amikor a gorbe ki van jelolve), illetve hogy szeretnénk-
e megjeleniteni a gorbe egyes osztépontjaihoz tartozé
els6- és masodrendd derivéltakat. A gérbének és de-
rivéltjainak szinét is kiilon-kiilon beéllithatjuk az ezek
alatt elhelyezked6 harom nyomégomb segitségével.

Ezeket koveti egy elemcsoport, mely a rendszdm-
novelés megvaldsitasit teszi leheté6vé. Ennek érdeké-
ben a KC-teret definidlé karakterisztikus polinomot
ugy kell megvaltoztatni, hogy a gyokeinek szama leg-
alabb egyel n6jon. Ezt teszi lehet6vé a hdrom bemeneti
mezd. Ha olyan gyokot dllitunk be, amely mér gyoke
volt a karakterisztikus polinomnak, akkor annak mul-
tiplicitasa a megfeleld értékkel nd. Ha a beallitott gyok
nem valds, akkor a konjugéltja is gyok lesz (ugyan-
olyan multiplicitdssal). A Mehet! (Go!) gomb megnyo-
madsakor végrehajtodik a rendszdmnovelés (a kontroll-
pontok szdma a megadott multiplicitdssal — illetve nem
valds gyok esetén annak kétszeresével — nd).

A kovetkez6 elemcsoport a felosztast teszi lehetévé

tomdnyt mely paraméterértéknél szeretnénk felosztani.

Végiil egy-egy gomb segitségével ki lehet torolni a kijelolt gorbét a szintérrdl, illetve le lehet azt
menteni egy fdjlba. A fajlbdl val6 betdltésre a Nézet fiil ad csak lehetGséget, hiszen ez a miivelet nem

kapcsolddik az aktudlisan kijelolt elemhez.

24

View Curve

Setup EC Space

Update Control Points
For Exact Description

Always Show Control Polygon
v Show First Order Derivatives

Show Second Order Derivatives

Colors of Derivatives:

Uth 151 2nd
Order Elevation:

Zero to Insert:

Re: 0.0000 -

abs(im): 0.0000 - Go!

Multiplicity: |1 -
Subdivision:

0.0000 < | 0.5000 S << 1.0000

Go!

& Delete Curve

[} save Curve (File)

2.3. dbra. Gorbe (Curve) fiil

. Bedllithatjuk, hogy az aktudlis értelmezési tar-



2. FEJEZET: IMPLEMENTACIOS RESZLETEK

2.1.3. A Feliilet (Surface) fiil

Mint az a 2.4. abran lathatd, a Feliilet fil szintén
a KC-terek illetve az egzakt leirds bedllitdsara szolgalo
gombokkal kezdddik. Itt akar kiilonboz6 KC-tereket is
beallithatunk az egyes (u és v) paraméterirdnyoknak.

A gombokat kévetd hiarom jelolénégyzettel bedl-
lithatjuk a kontrollhdlé alland6 l4thatésdgdt (hason-
I6an az elobbiekben a kontrollpoligonhoz), azt, hogy
szeretnénk-e 14tni a feliiletpontokhoz tartozé normaél-
vektorokat, illetve, hogy szeretnénk-e a feliileten izo-
parametrikus vonalakat megjeleniteni.

A kovetkezd legordiild listdbdl néhany eldre be-
allitott anyagi jellemzd koziil vélaszthatunk (melyek
meghatdrozzak a feliilet szinét és fényvisszaverd tulaj-
donségait), majd beéllithatjuk a normdlvektorok és izo-
parametrikus vonalak szinét.

A rendszamnovelésre szolgdld elemcsoport a gor-
békhez hasonld, viszont két gomb 4ll a rendelkezésiink-
re, mivel rendszamnovelést a feliiletek esetében Kkii-
16n az u vagy v paraméterirdnyban tudunk elvégezni.
Mindkét esetben csak a paraméteririnynak megfelel
KC-tér keriil mddositasra, valamint né a kontrollhalé
sorainak vagy oszlopainak szdma.

Kovetkezik két elemcsoport, az u- illetve v-irdnyd
felosztds megvaldsitasara. Mindkét esetben a megfele-
16 KC-tér értelmezési tartomanyabdl valaszthatunk ki
egy-egy belsé pontot, melynek megfelel6 (u- vagy v-
irdnyd) paramétergdrbe mentén torténik majd a feliilet
felosztasa.

Végiil egy-egy gomb ad lehetdséget a feliiletdarab

torlésére illetve dlloméanyba mentésére.

2.1.4. A Pont (Point) fiil

Bér a kontrollpontok egérrel mozgathaték, el6for-

View Surface

Setup EC Space U Setup EC Space V

Update Control Points For
Exact Description

Always Show Control Net
Show Normals
Show Isoparametric Lines
Material: Turquiose -

Normals' Color:

Isoparametric Lines' Color:

Order Elevation:

Zero to Insert:

Re: 0.0000 -
u
abs(im): 0.0000 -
A"
Multiplicity: |1 -
U Subdivision:
0.0000 < | 0.5000 S < 1.0000
Go
V Subdivision:
0.0000 < | 0.5000 S < 1.0000
Go

& Delete Surface | |[*} save Surface (File)

2.4. abra. Feliilet (Surface) fiil

dulhat, hogy a felhaszndl6 konkrét koordindtaértékre szeretné helyezni ezeket. Egy kijel6lt kontrollpont

koordinatdinak megtekintésére €s megvaltoztatisara ad lehet6séget a 2.5. dbran lathatd Pont fiil.

Mint minden eddigi bedllitds esetében, a szintér élében médosul jelen esetben is, ha az X, Y, Z

koordinatakhoz tarsitott értékeket megvaltoztatjuk.
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2. FEJEZET: IMPLEMENTACIOS RESZLETEK

View Surface Point

Control Point Position

4k

X: | 0.50000000

L

Y. | 0.50000000

Z: | 2.00000000 -

2.5. abra. Pont (Point) fiil

2.1.5. KC-terek konfiguralasara szolgalé dialégusablak

Amint azt az elméleti részben emlitettiik, egy KC-teret az (1.12) alakd karakterisztikus polinom
gyokeinek megaddsaval hatdrozunk meg az alkalmazédsban. Erre nyujt lehetdséget a 2.6. dbran lathat6
dial6gusablak.

Setup EC Sp

Setup Parameters Preview NNB Bases
Definition Domain: Zeros of the Characteristic Polynomial: o Add New

[ 0.000000 = 1.570796 = ]
’ Re(z): abs( Im(z) ): Multiplicity: |1

Rel(z): | 0.000000 ~| abs(Im(z)): |1.000000 +| Multiplicity: |2 |5| Delete

Re(z): |1.000000 ~| abs(Im(z)): |0.000000 = | Multiplicity: |1 Delete

Notes:

The EC Space will be represented by the roots of
its characteristic polynomial. If a complex number
is a root, then its conjugate will become another
one automatically. with the same multiplicity (it
does not have to be defined separately).

The root 0+0i must have at least a multiplicity of
one, it can not be deleted.

The same root can not be given twice, please
provide the correct multiplicity instead.

Load Existing Setup Save For Later Use Undo Changes Save Cancel

2.6. abra. KC-tér definidlasara szolgalé dialégusablak

Bedllithatjuk a tér fliggvényeinek k6z0s értelmezési tartoményéat, majd hozzdadhatunk, kitdrolhetiink
és megvaltoztathatunk gyokoket, illetve ezek multiplicitdsait. A komplex gydkpérok koziil csak az egyi-
ket kell megadni (vagyis az imagindrius résznek csak az abszoltt értékét), hiszen a masik ugyanolyan

multiplicitassal feltétleniil gyok kell legyen, mert a karakterisztikus polinom valds egyiitthatds.
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Ha deformalt intervallumot adunk meg, hibaiizenetet kapunk (Id. 2.7. dbra). Hasonl6an abban az

P

esetben is, ha egy gyokot kétszer adunk meg (1d. 2.8. dbra), ugyanis ilyenkor az el6z6 gyok multiplicitasat

kellene novelni.

Definition Domain: Zeros of the Characteristic Polynomial:

[ 2.000000 - L.570796 - ]®
3

[} Relz): abs( Im(z

|Left endpoint must be less than right endpeint.
RelzZlr | 0.000000 < absi miz

2.7. abra. Hibas intervallum esetén mutatott hibatizenet

Re(z): | 0.000000 + abs{Imiz)): |0.000000 S Multiplicity: |1 ~ | | Delete @

k

|This zero is already present. Increase the multiplicity of the previous occurence instead. |

2.8. dbra. Ismétl6do gyok esetén mutatott hibatizenet

Az alul taldlhat6 gombok segitségével betolthetiink egy KC-tér konfigurdciét egy memoridban talal-
hat6 pufferbdl vagy f4jlbol (Load Existing Setup), illetve lementhetjiik azt a memoridban térolt pufferbe
vagy féjlba (Save For Later Use). Lehet6ség van az ablak megnyitdsakor latott eredeti allapot visszaalli-
tasara (Undo Changes), a valtoztatdsok mentésére (Save) €s az ablak bezardsara mentés nélkiil (Cancel).

A dial6gusablak rendelkezik egy, a 2.9. dbrdn l4thaté mésik fiillel is, mely az el6bbiekben definialt
KC-tér keverdfiiggvényeinek eldnézetét mutatja. Ez azért is fontos, mert a kever6fiiggvények alakjat 14t-
va meggy6zbdhetiink arrdl, hogy nem iitkoztiink stabilitasi problémaba, illetve hogy az altalunk megadott
intervallumon tényleg KC-teret generalnak-e a gyokok altal meghatarozott bazisfiiggvények.

Ez utébbi ugyanis nem akdrmilyen intervallumra igaz és az ennek el6zetes meghatdrozasara ismert
mddszer (1d. (1.18)-ban a kritikus hossz vizsgélatdt) néha tdl nagy elévigydzatossagot eredményez (az-
az nagyobb intervallumot is gond nélkiil hasznélhatna a felhaszndld). Ennek elkeriilése érdekében az
intervallum megfelelségének (grafikus) ellendrzését itt a felhasznaléra bizzuk.

A bazisfiiggvények alakjan kiviil lathaté még az aktudlis értelmezési tartomany, a gyokok altal meg-
hatdrozott differencidlegyenlet, illetve a hagyomdanyos bazist felépits fiiggvények zart alakja. A megje-
lenitési vaszon hattérszine szintén allithat6 (alapértelmezetten fekete).

A felhaszndlénak javasolt munkamenet tehat az, hogy miutdn a tér paramétereinek bedllitdsa meg-
tortént, mentés elStt térjen at erre a fiilre az dj keverdfiiggvények ellendrzése céljabol. Igy elkeriilhetd,
hogy mentés utdn a gorbe (vagy feliilet) alakja az instabilitds miatt (vagy a nem megfelel$ értelmezési

tartomany miatt) elromoljon.
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Setup EC Spa

Setup Parameters | Preview NNB Bases
Definition Domain: [ 0.000000, 1.570796 ] |

Differential Equation: y'8! - 3! 4 2.y# - 2.y3) 4 (2 1) — g

Ordinary Basis Functions: 1, cos(x), sin{x), x-cos(x), x-sin(x), e*

MNE Basis Functions: Background Color: [_.. |
Save Cancel

2.9. dbra. KC-tér kevertfiiggvényeinek nézete

2.1.6. Egzakt leiras beallitasara szolgal6 dialégusablak

Az egzakt leirds megvaldsitdsdhoz lehet6séget kell adjunk a felhaszndlonak arra, hogy a hagyoma-
nyos bazisoktol fiiggd paraméteres alakot megadhassa. Erre szolgél a 2.10. abran lathat6 dialégusablak.

Gorbék esetén a hagyomdanyos bazisfiiggvények jelennek meg az oszlopokban, feliiletek esetén pedig
az u- és v-irdnyud terek hagyomdinyos bazisfiiggvényeibdl allé szorzatparok. A felhaszndlé nem nulla
egylitthatok bedllitdsa 4ltal tudja bevinni a rendszerbe a leirni kivant gorbe vagy feliiletdarab explicit
paraméteres alakjat.

A 2.10. abran példdul az 1.7. abran szerepl$ torusz paraméteres alakjdnak megfelelGen allitottuk
be az egyiitthatokat. Mivel az oszlopok szdma a terek dimenziészdménak szorzata, ezeket nem mindig
tudjuk egyszerre megjeleniteni, ezért egy gorgetdsavot hasznalunk.

Az Frissités (Update) gomb lenyomadsakor a kijelolt gorbe vagy feliileti folt kontrollpontjainak helye
az (1.42)-es bazistranszformacio, illetve az (1.46)-os és (1.48)-as képletek alapjan megvaltozik, igy a
paraméteres lefrdsnak megfeleld alakot kapjuk (az aktudlis értelmezési tartoményra lesziikitve, példdul
az 1.7. dbran lathat6 téruszt tobb folt egyiittesébdl tudjuk csak elallitani).

Lehet6ség van még az aktudlis egylitthaté-bedllitas fajlba mentésére, illetve onnan torténd betoltésé-
re, valamint az ablak bezardsdra anélkiil, hogy a kontrollpontok helyét médositanank.
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Setup For Exact Description

Setup for Exact Description

On this popup you can set up the coefficients of the parametric description of a curve (surface) and update the control points of the selected EC
B-curve (B-surface) to get an exact description.

1 cos(v) sin(v) cos(u) cos(u) - cos(v) cos(u) - sin(v) sin(u) <
X: 0.000000 |5 3.000000 |+ 0.000000 |+ 0.000000 |+ 1.000000 + 0.000000 + 0.000000 |+
y: 0.000000 < 0.000000 % | 5.000000)] 0.000000 = 0.000000 = 1.000000 = 0.000000 =
z 0.000000 3 0.000000 |+ 0.000000 % 0.000000 % 0.000000 % 0.000000 % 1.000000 &

] 3

Summary:
X = 3 -cos(v) + cos(u) - cos(v)
y = 3 -sin(v) + cos(u)-sin(v)
Zz = sin(u)

] b

Load Coefficients From File Save Coefficients To File Update Cancel

2.10. dbra. Egzakt leiras bedllitasa

2.1.7. Egérmiiveletek a szintéren

Az implementélt egérmiiveletek egyrészt a kameranézet allitasat, masrészt pedig objektumok kijelo-
1ését (majd ezek elmozgatasat) teszik lehetdvé.

Az egérkurzor tipusa annak fiiggvényében valtozik, hogy az alatta 1év teriileten éppen milyen ob-

jektum talédlhato:

— az alapértelmezett kurzor (2.11a 4bra) akkor 14thatd, amikor alatta nem taldlhaté objektum, ilyen-
kor kattintds hatdsara nem torténik kijelolés, viszont tudjuk a kameranézetet mozgatni (bal egér-
gombot letartva), a nézet Ox és Oy tengelyei koriil forgatni (jobb egérgombot letartva), illetve

nagyitani vagy kicsinyiteni (gorgetéssel);

— a megjelold kurzor (2.11b dbra) akkor 14thatd, ha az egérmutaté alatt egy még nem kijelolt gorbe
vagy feliiletdarab taldlhatd, bal kattintdssal ilyenkor kijelolhetjiik az adott elemet;

— a pontmegjelold kurzor (2.11c dbra) olyankor jelenik meg, ha a kijelolt gorbe vagy feliiletdarab
kontrollpoligonjdnak egyik csticspontja van a kozelben, ilyenkor bal egérgombbal kijeldlhetjiik az

adott kontrollpontot;

— a mozgatd kurzor (2.11d 4bra) azt jelzi, hogy az egér alatt az aktudlisan kijelolt elem taldlhatd,
ilyenkor a bal egérgombot letartva tudjuk mozgatni a kijelolt elemet, a jobb egérgombot letartva
tudjuk forgatni (a nézet Ox és Oy tengelyei koriil), illetve a [Ctrl] billentyiit letartva a gorgdvel

tudjuk nagyitani vagy kicsinyiteni.
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aa.a

(a) Alapértelmezett kurzor (b) Megjelol6 kurzor (c) Pontmegjel616 kurzor (d) Mozgat6 kurzor

2.11. dbra. Kurzortipusok

2.2. A forraskod szerkezete

A programkéd C++ nyelvben (1d. [Stroustrup, 2013]) frédott objektumorientalt szemléletben, a fel-
hasznalt kiilso fiiggbségek pedig:

— a Qt 5 keretrendszer!: a grafikus felhasznal6i feliilet alapelemeit, illetve az ezekhez tartozé (signal
— slot) tipusu eseménykezelést biztositja, tovabba rendelkezésiinkre bocsat olyan dialégusablako-
kat, melyekkel a (ki- és bemeneti) fajlok, illetve a felhasznélni kivant szinek kivalaszthat6ak (1d.
2.12. ébra). Mindezen elemek megjelenitéséhez a keretrendszer Widgets alrészét hasznéltuk. Az
elkészitett alkalmazast igy bizonyos platformok k&zott hordozhatéva tehetjiik (jelen esetben egy
Linux disztribicion X11 alatt, illetve MS Windows 10 operacids rendszeren teszteltiik az alkalma-

zast, csak a forditas konfiguracidja platformfiigg6);

Select Color >

Select File to Save

surface30_patches_all_altemating.txt Pick Screen Color

Look in: [ /home/data/ubbjlicenc/werkspace/examples 000 RE® Eeale et
# Computer | F9 torus = = = = = - <
B amold surface30_ecspace_u.txt
surface30_ecspace_v.txt EEEEN
surface30_exactdescription_coefficients.txt EEEEN
surface30_numeric_values. txt EEE

surface30_patches_all.txt
surface30_patches_more.txt

surface30_patchesl.txt Hue: | 233 Red: |6

Custom colors

surface30_patches2.txt Sat: | 248 5| Green: |27

ol O] [

val: | 212 Blue: | 212
File name: u| ‘Add to Custom Colors HTML: | #061bd4
Files of type: | All Files (¥) ~ || Xcancel Pox X cancel
(a) F4jlvalaszté ablak (QFileDialog) (b) Szinvélaszt6 ablak (QColorDialog)

2.12. dbra. Qt Widgets dial6gusablakok

— az OpenGL konyvtar: az alacsonyszint{i grafikus elemek (pont, szakasz, hdromsz6g) megjelenité-

sét, szinek, anyagi jellemz6k és drnyaldk bedllitasat, illetve a szintér kialakitdsat (nézet bedllitasa,

l.https://doc.gt.i0/qgt-5/ (megtekintve 2018. jinius 20.)
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megvilagitas) teszi lehetévé (részletes leirasért 1d. [Kessenich et al., 2016]). Felhasznéltuk tovabba
a GLU?* (OpenGL Utility Library) és GLEW? (OpenGL Extension Wrangler) segédkonyvtarakat.

- az OpenMP* (Open Multi-Processing) programozasi interfész: az egyes szamitdsok parhuzamo-

sitdsara haszndltuk dltaldban olyan esetekben, amikor ezek csak kiilonb6z6 memériacimekre ir-

nak. Ilyenkor a kolcsonds kizdrds megvaldsitdsa nem volt sziikséges, és egyszerli #pragma omp

parallel for tipusi konstrukcidkat tudtunk hasznélni.

A forrdskdéd megirdsdhoz, a felhasznéléi fe-
lillet komponenseinek grafikus szerkesztéséhez, a
forditashoz, illetve a tesztek futtatdsdhoz a Qf
Creator nevi integrdlt fejleszt6i kornyezetet hasz-
naltuk. A forrdskdd elrendezését a 2.13. dbra
szemlélteti, mely a Qr Creator felhasznaléi felii-
letén megjelend hierarchia.

A Core mappa tartalmazza azon alapvetd ma-
tematikai konstrukciéknak megfelel6 osztilyokat,
melyeket az alkalmazas tobbi része ismételten fel-
haszndl, ilyenek példdul a térbeli Descartes-féle
és homogén koordindtdk (DCoordinate3, HCo-
ordinate3), illetve matrixok és matrixfelbontasok
(Matrix, RowMatrix, ColumnMatrix, Triangular-
Matrix, RealMatrix, PLUDecomposition, Facto-
rizedUnpivotedLUDecomposition). Szintén itt ta-
lalhatéak meg az OpenGL-lel megjelenithetd gor-
bét és feliiletet reprezentald osztalyok (Generic-
Curve3, TriangulatedMesh3), illetve azok is, ame-
lyek ezeket kontrollpontok és keverdfiiggvények
(nullad- és magasabb rendd derivdltjai) alapjan
el6 tudjak allitani az (1.1)-es és (1.2)-es alak-
nak megfeleléen (LinearCombination3, Tensor-
ProductSurface3). Végiil néhany, a grafikus meg-
jelenitést elésegitdé osztaly is megtaldlhaté eb-
ben a katalégusban: fények (DirectionalLight,
PointLight, SpotLight), arnyal6 (ShaderProgram),
anyagi jellemzdk (Material).

Az EC mappa tartalmazza az 1. fejezetben be-

= project [thesis]

= project.pro
~ [ Headers
» B Core
~ B EC
h| BCurve3.h
h| BSurface3.h
h| CharacteristicPolynomial.h
h| ECSpace.h
k| OrdinaryBasisFunction.h
~ = GuI
+ = Model
h| Curveltem.h
h| Scene.h
h| Sceneltem.h
h| Surfaceltem.h
~ = SetupECSpaces
h| ECSpaceDatabase.h
h| LoadExistingSpaceDialog.h
NNBBasesGLWidget.h
PreviewECWidget.h
SaveForLaterUseDialog.h
SetupECSpacesDialog.h
h | ZeroltemWidget.h
~ [ SetupExactDescription
k| BasisColumn.h
h| SetupExactDescriptionDialog.h
CommonUITools.h
CurveSetupTab.h
GLWidget.h
MainWindow.h
PointSetupTab.h
SideWidget.h
SurfaceSetupTab.h
h| ViewTab.h
» B3 utils
» [ Sources
~ B Forms
» B3 Gul
» [FE Resources
» [ project tests [thesis]

= ===

= = = = = =T

2.13. 4bra. Forrasfajlok elrendezése

mutatott elméleti eredmények implementacidjat. Az itt taldlhaté osztilyok kddja djrahasznosithatd, nem

2.https://www.khronos.org/registry/OpenGL/specs/gl/glul.3.pdf (megtekintve 2018. jinius 19.)
3.http://glew.sourceforge.net/ (megtekintve 2018. jinius 19.)
4. https://www.openmp.org/ (megtekintve 2018. junius 20.)


https://www.khronos.org/registry/OpenGL/specs/gl/glu1.3.pdf
http://glew.sourceforge.net/
https://www.openmp.org/

1
2
3
4
5
6
7
8
9

11

2. FEJEZET: IMPLEMENTACIOS RESZLETEK

fligg sem a felhasznaldi feliiletiinktdl, sem a Qf keretrendszerben definidlt mas osztalyoktdl és fiiggvé-
nyekt6l.

Az KC-terek kezeléséért és a bazisfiiggvények kiértékeléséért felelds osztalyok a 2.14. dbran l4tha-
tok. A CharacteristicPolynomial osztaly egy (1.11) alaku differencidlegyenlet karakterisztikus polinom-
jat abrazolja, az OrdinaryBasisFunction pedig az egyenlet megoldasterének egyik hagyomanyos bazis-
fliggvényét tudja tarolni, valamint kiértékelni ennek (nullad- €s magasabb rend(i) derivaltjait a Leibniz-

szabdly segitségével.

ECSpace

+definitionDomain: std::pair<double, double>
(.
+getDimension(): unsigned
+NNBBaseDerivative(index:unsigned,deriv order:unsigned,
input:double): double
+getAugmentedECSpace (zeroToAdd: Zero) : ECSpace*
+getBasisTransformationMatrix(): RealMatrix

(... ‘}

+characteristicPolynomial

CharacteristicPolynomial

+zeros: std::vector=Zero>

+getGrade(): int [ege——— CharacteristicPolynomial::Zero
+getCoefficients(): std::vector=double= Treal
+1s0dd0rEvenFunction(): bool N
+absImaginary
(- +multiplicity

(.-

+ordBases

OrdinaryBasisFunction
+XxPow
+expCoef
+trigCoef
+1s51ine
+getDerivative(order:unsigned, input:double): double
+getHTMLRepresentation(variable:string="x"): string
()

2.14. abra. A KC-terek kezeléséért felelds osztalyok

Az ECSpace osztily dbrazol egy kiterjesztett Csebisev-teret (neve az angol Extended Chebyshev
megnevezEésbdl adodik), fejallomanydnak tartalmat lathatjuk a 2.1. kédrészletben.

2.1. Kédrészlet. Az ECSpace.h fejalloméany ‘

namespace cagd
{
class ECSpace
{
public:
std :: pair <double , double> definitionDomain;
CharacteristicPolynomial characteristicPolynomial;

ECSpace ();
ECSpace(const ECSpace &ecSpace);
const ECSpace &operator =(const ECSpace &rightSide );

/! Preprocessing is needed when the definitionDomain
/! or the characteristicPolynomial changes:

void preprocessing ();

std :: vector <OrdinaryBasisFunction> ordBases;
unsigned getDimension() const;
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double NNBBaseDerivative (
unsigned index, unsigned deriv_order, double input) const;

ECSpace xgetAugmentedECSpace (
CharacteristicPolynomial :: Zero zeroToAdd) const;

RealMatrix getBasisTransformationMatrix () const;

private:
unsigned _dimension;
bool _isReflectionInvariant;
RealMatrix _rho;
RealMatrix _mu;
std :: vector <double> _lambda;

void setupOrdBases ();
void calculateRho ();
void calculateMuAndLambda ();

IE

std ::ostream &operator <<(std :: ostream &stream , const ECSpace &space);
std ::istream &operator >>(std ::istream &stream , ECSpace &space);

Az értelmezési tartomany és a karakterisztikus polinom kiviilr6l szabadon allithat6ak, az
NB-bézisfiiggvények kiértékelése eldtt viszont meg kell hivni a 15. soron lathaté el6éfeldolgozo
preprocessing () fiiggvényt, mely el6késziti a kiértékeléshez sziikséges (p; j, i j, Ai j) egylittha-
tokat az 1.3. szakasznak megfeleléen. A 23. soron taldlhaté getAugmentedECSpace (...) fiigg-
vény a nagyobb dimenziészdmu, adott ) gyokot tartalmazé KC-teret tériti vissza. Béazistranszfor-
madciés matrixot is generdlhatunk az 1.6. szakaszban leirtaknak megfeleléen a 26. soron megjelend
getBasisTransformationMatrix () fiiggvény segitségével.

A BCurve3 és BSurface3 osztilyok B-gorbéket és B-feliileteket tarolnak és a Core mappéban talal-
haté LinearCombination3 illetve TensorProductSurface3 osztilyokat terjesztik ki (14sd 2.15. dbra), de-
finidlva a keverdfiiggvények kiértékelésére vonatkozo tiszta virtudlis tagfiiggvényeket. Mindkét osztaly
tartalmazza a felhaszndlt KC-teret (-tereket), illetve a rendszamnoveléshez, felosztdshoz és egzakt le-
iras konfiguraldsdhoz sziikséges metddusokat, melyek implementéciéi az 1.4., 1.5. és 1.6. szakaszokban
lefrtakat kovetik. A 2.2. és 2.4. kodrészletek a BCurve3 illetve BSurface3 osztilyokhoz tartozé fejallo-
manyok.

2.2. Kédrészlet. A BCurve3.h fejillomény

#pragma once

#include "../Core/LinearCombination3 .h"
#include "ECSpace.h"

namespace cagd

{

class BCurve3: public LinearCombination3

{
private:
const ECSpacex _ecSpace;

public:

33



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

1
2
3
4
5
6
7

2. FEJEZET: IMPLEMENTACIOS RESZLETEK

LinearCombination3

TensorProductSurface3

(...)

(...

+<<abstract>> BlendingFunctionValues(u:GLdouble,
values :RowMatrix<GLdouble>): GLboolean
+<<abstract>> CalculateDerivatives(max_order_of_derivatives:GLuint,
u:GLdouble,
d:Derivatives): GLboolean

+<<abstract>> UBlendingFunctionValues(u_knot:GLdouble,
blending_values:RowMatrix<GLdouble>): GLboolean
+<<abstract>> VBlendingFunctionValues(v_knot:GLdouble,
blending_values:RowMatrix<GLdouble>): GLboolean
+<<abstract=> CalculatePartialDerivatives(maximum_order_of_partial_derivatives:GLuint,
u:GLdouble,
v:GLdouble,
pd:PartialDerivatives): GLboolean

BCurve3

(...)

+<=virtual=> BlendingFunctionValues(...)
+<<virtual=> CalculateDerivatives(...)

?

f

BSurface3
(.-}
+<<virtual>> UBlendingFunctionValues( ) : GLboolean
+<<virtual>> VBlendingFunctionValues(...): GLboolean
+<<virtuals> CalculatePartialDerivatives(...): GlLboolean

(...)

-_ecSpace ECSpace ecSpacell, _ecSpaceV ?

[

(...

2.15. dbra. A BCurve3 és BSurface3 osztilyok kapcsolatai

BCurve3(const ECSpacex ecSpace);

virtual GLboolean BlendingFunctionValues (

GLdouble u, RowMatrix<GLdouble>& values) const;
virtual GLboolean CalculateDerivatives (

GLuint max_order_of_derivatives ,

GLdouble u,

Derivatives& d) const;

std :: pair <ECSpace*x, BCurve3*> performOrderElevation (

double reZero ,

double imZero, int

multiplicity ) const;

bool calculateDataForOrderElevatedCurve (

ECSpace xnewECSpace,

struct SubdivisionResult {
ECSpace xecSpaceLeft;
BCurve3 xbCurveLeft;
ECSpace xecSpaceRight;
BCurve3 *bCurveRight;

}s

SubdivisionResult

performSubdivision (

void fillSubdivisionValues (
SubdivisionResult &result ,

double alpha,
double gamma,

double beta) const;

BCurve3 xnewCurve) const;

double gamma) const;

void updateControlPointsForExactDescription (
const std::vector<DCoordinate3 > &coefficients );

2.3. Kodrészlet. A BSurface3

#pragma once

#include "ECSpace.h"
#include "
#include <unordered_map>

namespace cagd

{

../ Core/ TensorProductSurfaces3.h"
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8 class BSurface3: public TensorProductSurface3

9 {

10 private:

11 const ECSpace *_ecSpaceU;

12 const ECSpace *_ecSpaceV;

13

14 unsigned _cache_u_count;

15 unsigned _cache_v_count;

16 std :: unordered_map<unsigned , double> _u_derivative_cache;
17 std :: unordered_map<unsigned , double> _v_derivative_cache;
18

19 unsigned getKey(unsigned index, unsigned order, unsigned knot);
20 double getNNBDerivativeU (unsigned index, unsigned order, double u);
21 double getNNBDerivativeV (unsigned index, unsigned order, double v);
22

23 public:

24 BSurface3 (const ECSpace xecSpaceU, const ECSpace xecSpaceV);
25

26 GLboolean UBlendingFunctionValues (

27 GLdouble u_knot,

28 RowMatrix<GLdouble> &blending_values);

29 GLboolean VBlendingFunctionValues (

30 GLdouble v_knot,

31 RowMatrix<GLdouble> &blending_values );

32

33 GLboolean CalculatePartialDerivatives (

34 GLuint maximum_order_of_partial_derivatives ,

35 GLdouble u, GLdouble v,

36 PartialDerivatives &pd);

37

38 std :: pair <ECSpace *, BSurface3 x> performUOrderElevation (
39 double reZero, double imZero, int multiplicity) const;
40 std :: pair <ECSpace *, BSurface3 x> performVOrderElevation (
41 double reZero, double imZero, int multiplicity) const;
42

43 struct SubdivisionResult {

44 ECSpace *xecSpacelLeft;

45 BSurface3 xbSurfacelLeft;

46 ECSpace xecSpaceRight;

47 BSurface3 xbSurfaceRight;

48 b

49 SubdivisionResult performUSubdivision(double gamma) const;
50 SubdivisionResult performVSubdivision(double gamma) const;
51

52 const ECSpace xgetECSpaceU() const {return _ecSpaceU;}

53 const ECSpace xgetECSpaceV () const {return _ecSpaceV;}

54

55 void updateControlPointsForExactDescription (

56 const std::vector<DCoordinate3> &coefficients );

57

58 virtual TriangulatedMesh3* GenerateImage (

59 GLuint u_div_point_count, GLuint v_div_point_count,

60 GLenum usage_flag = GL_STATIC_DRAW);

61 }s

62 }

A GUI mappa tartalmaz minden, a felhasznaldi feliilleten megjelend elemet, illetve a felhasznal6 altal
elidézett események kezelését. A Model katal6gusban taldlhatok a szinteret, illetve az ebben elhelyez-
hetd elemeket tirold osztdlyok. A tdrolds, megjelenités és egérmiiveletek egységes kezelése érdekében
a szintéren megjelenitett gorbéket és feliileteket jelképezd Curveltem és Surfaceltem osztalyok egyarant
a Sceneltem interfészt (csak tiszta virtudlis tagfiiggvényekkel rendelkezd osztdlyt) implementéljadk. A
SetupECSpaces kataldgus tartalmazza a 2.1.5. pontban bemutatott KC-teret bedllité dialégusablakot, a
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SetupExactDescription pedig az egzakt leirds beallitasat teszi lehetdvé (1d. 2.1.6. pont). Végiil az eszkoz-
tar egyes fiileinek, illetve a szinteret tartalmazé és OpenGL kontextussal rendelkez6 elemnek (GLWidget)
is megfelel egy-egy osztily a GUI mappéban.

A felhaszndldi feliilet egy-egy Osszetett eleméhez (melyek az tun. Widget-ek) az 4ltalunk bevezetett
osztaly mellett tartozik egy Ui névtér alatt taldlhat6 osztaly is, melyet a grafikus szerkeszt6 dltal lementett
XML fajlbol a Ot keretrendszer fejleszt6i csomagjanak részét képezd gmake program general forditaskor.

A grafikus feliiletszerkeszt6 jelentSsen gyorsitja az egyes Widget-ek elkészitését.

Filter Object £
s —| | Setup Parameters | Preview NNB Bases -~ Een:‘pECipa(ggD\a\ug

= ~ scrollarea

& Vertical Layout Definition Domain Zeros of the Characteristic Polynomial: ~ 5 scrollAreawidgetContents

[l Horizontal Layout . . . cancelButton

228 [ ®0.000000 |s® 1.000000 | ] @ ~ editorTabs

= Grid Layout " " o ~ B parametersTab

3 rorm Layout addNewZeroButton

< Soacars commaLabel
b definitionDomainLabr
] Horizontal Spacer domainLeftSpinBox
Vertical § domainRightSpinBox
E vertcal Spacer domainvalidation
Buttons label

(2] push Button label 2
leftBracketLabel
(&Y ool Button rightBracketLabel
@ Radio Button ~ zerosScrollArea
& scrollareawids
@ Check Box 5 previewTab
© command Link Button invisibleButton E
Dialog Button Box Notes: -
= Views\(Nodel.Aased The EC Space will be represented by the roots of domainLeftSpinBox : QDoubleSpinBox
E List View its characteristic polynomial. If a complex number Property Value -
R Tree view is a root, then its conjugate will become another =
bl view one automatically, with the same multiplicity (it abjectName TS

does not have to be defined separately).
D column view

e e DY The root 0+0i must have at least a multiplicity of enabled v
one, it can not be deleted. Slgeometsy] (30, 40), 10.
[&] vist widget Z -
S8 Tree Widget The same. oot can not be! given twice, please - =
provide the correct multiplicity instead.
B Table widget Width 101
- Containers Height 2
(=] Group Box Load Existing Setup | | Save For Later Use isi Undo Changes |~ sizePolicy [Minimun, Fi
Scroll Area Horizontal Policy  Minimum
Y Vertical Policy Fixed
B3 ool Box Horizontal Stretch 0
B Tab Widget « v Vertical Stretch 0
B stacked widget Filter ~ minimumsize 0x0
& Frame Name Used Text shortcut Checkable ToolTip ivickh) 0
Height 0
[ widget ~ maximumsize 16777215 x
[[H M1 Area Width 16777215

Height
Action Edit... | Signals Slots Editor 4 mimmineramane .

3 Dock widget i67z7215 L
S input widgets

2.16. dbra. A Qt Creator grafikus szerkesztGje

2.3. Néhany algoritmus implementacigjanak vazlatos tesztelése

Az abrék alapjan torténd megitélés mellett szerettiik volna, ha valamilyen automatikus médszerrel is
meg tudunk gy6z4dni arrdl, hogy az ismertetett numerikus algoritmusok implementacidja helyes, illetve
az egyes modositadsok és optimalizéldsi kisérletek sordn sem romlik el. Ezt a célt szolgélja a forraskod
részét képezd project_tests konyvtar tartalma, mely egy a Qr Test keretrendszerre épiild unit-teszt pro-
jekt, mely a 2.17. dbran lathat6 osztalyokat foglalja magaba (bar az altalunk implementalt tesztek inkdbb
komponens-tesztek, melyek az ECSpace, OrdinaryBasisFunction és CharacteristicPolynomial osztalyo-
kat egyiittesen tesztelik, itt is a unit-teszteknél megszokott ellendrzd fiiggvényeket hasznaljuk, melyeket
a Ot keretrendszer ezen alrésze biztosit, a futtatasi kornyezet mellett).

Az OrdinaryBasisFunctionTests osztidlyban azt teszteljiik, hogy a hagyoményos bazisfiiggvények
(nullad- és magasabb rendii) derivaltjait helyesen értékeli-e ki az OrdinaryBasisFunction osztdly. Az ott
implementdlt Leibniz-szabdly altal adott eredményeket hasonlitjuk Ossze a kézzel kiszdmitott explicit
alakok behelyettesitési értékével néhany rogzitett esetben.

Az ECSpaces alkonyvtarban taldlhaté tesztek azt a tényt hasznéljdk ki, hogy bizonyos fiiggvényte-
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~ = BasisTransformation
h| BasisTransformationTests.h
* = ECSpaces
h | PolynomialECSpaceTests.h
h| T1ECSpaceTests.h
- = OrdinaryBasisFunctions
h | OrdinaryBasisFunctionTests.h

2.17. ébra. A tesztelést megvaldsito osztalyok

Pyl

rek esetében az egyedi normalizalt B-bazis explicit alakja is ismert. Ez lehet6vé teszi, hogy az altala-
nos implementdcié altal kiszamitott bazisfiiggvényeket az explicit alakokkal hasonlitsuk Ossze (ezaltal
észrevegylink esetleges olyan eltéréseket, amik nem csak a szdmitdsi pontatlansdgnak tudhaték be). A
PolynomialECSpaceTests osztaly a legfeljebb n-edfoku polinomok terében az ismert alaki Bernstein-
polinomokbdl 4ll6 NB-bazist haszndlja Osszehasonlitdsi alapként, mig a TIECSpaceTests osztily az
({1,sin(z),cos(z) : z € [0, 8], B < 7 }) térben ismert NB-bazisfiiggvényeket, melyek alakja:

bao(u) = %Sinz <B ; u) )

by (u) = Msin <5 3 ”) sin (3) : @.1)

oid T1ECSpaceTests:: valuesTest ()

1
2

3 for (double input = 0; input <= 1; input += 0.001) {

4 QVERIFY2 (

5 std :: abs(_ecSpace —>NNBBaseDerivative (0, 0, input) — explicitO (input)) < TOLERANCE,
6 "First basis function wrong");

7

8 QVERIFY2(

9 std :: abs(_ecSpace —>NNBBaseDerivative (1, 0, input) — explicitl (input)) < TOLERANCE,
10 "Second basis function wrong");

11

12 QVERIFY2(

13 std :: abs(_ecSpace —>NNBBaseDerivative (2, 0, input) — explicit2 (input)) < TOLERANCE,
14 "Third basis function wrong");

Tekintsiik példdul a T/ ECSpaceTests osztily 2.4. kddrészletben lathaté valuesTest () metddusit.
A [0, 1] intervallumot ezred nagysagu 1épésenként végigpdsztazzuk és minden értékre teszteljiik, hogy

azexplicit0, explicitl és explicit2 fuggvényekben implementalt (2.1)-beli b (u), b1 (u)
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illetve by 2(u) fiiggvényalakok behelyettesitési értékeivel kozelitéleg megegyezd értéket kapunk-e az
ECSpace osztidly NNBBaseDerivative metddusitdl. Amennyiben nem, a keretrendszer QVERIFY?2
makréja a megfeleld hibaiizenettel jelzi, hogy a teszteset sikertelen.

Végiil a BasisTransformationTests osztaly harom kiilonbozé tipusi KC-tér esetében ellendrzi, hogy a
generalt bazistranszformacids matrix helyesen alakit-e az 4t az NB-bazis és a hagyomanyos bazis kozott.

Az aldbbiakban a teszt-keretrendszer kimenete lathaté a BasisTransformationTests futtatdsa kozben:

*kkxxxxx*x Start testing of BasisTransformationTests s*x*xxxxx%

Config: Using QtTest library 5.10.1, Qt 5.10.1
(x86_64-1ittle_endian-1p64 shared (dynamic) release build;
by GCC 7.3.1 20180406)

PASS : BasisTransformationTests::initTestCase ()

PASS : BasisTransformationTests::testForBernstein ()

PASS : BasisTransformationTests::testForTrigonometric ()

PASS : BasisTransformationTests::testForAlgebraicTrigonometric ()
PASS : BasisTransformationTests::cleanupTestCase ()

Totals: 5 passed, 0 failed, 0 skipped, 0 blacklisted, 10ms

***kxxxxx*x Finished testing of BasisTransformationTests *xxxxx*%x*
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3. fejezet

Alkalmazasi lehetoségek

3.1. Hatékonysag futasido szempontjabol

Az éltaldnossdg elényei és az instabilitds megel6zésének problémdja mellett a bemutatott algorit-
musokban szereplé nem kevés szdmitds aggodalomra adhat okot a futdsid6é szempontjdbol. Az alabbi

tdblazatban Osszefoglalunk néhdny atlagolt mérési eredményt.

KC-tér | Gorbepontok kiértékelése (1000 darab) | Feliiletpontok kiértékelése (50 x 50 darab)
Ps 4.164 ms 8.582 ms
P11 22.887 ms 47.753 ms
T11 24.204 ms 126.817 ms
ATi3 66.364 ms 534.541 ms
AEqq 52.468 ms 222.778 ms
AET3 195.819 ms 4044.96 ms

3.1. tablazat. Mért futasid6k kilonbozé KC-terek esetében

Az els6 oszlopban taldlhaté jeloléseknek a kovetkezd KC-terek felelnek meg:

Ps = ({1, u, v*, u cutud e [0,1]}),

Py = ({1, u, u?, . utl iu e o, 11}),

T = < {1, cos(u), sin(u), cos(2u), sin(2u), ..., cos(5u), sin(bu) : u € [0, g]} >,
ATq3 = < {1, w cos(ku), w sin(ku) : u € [0, g], j€{0,1,2}, ke {1,2}} >,
ARy = ({1, e sue0,1], j€{0.1,2}, ke{1,2,3}1}),

AET,3 = <{1, ul e cos(u), u/esin(u), uet cos(2u), uesin(2u),

we?™ cos(u), ule*sin(u) :u € [0,1], j € {0, 1}}>,
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

A téblazat egyes celldiban gorbék esetén 500, feliiletek esetén pedig 100 mérés atlaga lathatd. A
méréseket egy Intel(R) Core(TM) i7-3720QM processzorral végeztiik 2.6GHz-es 6rajel mellett. A prog-
ramot a GNU GCC 8.1.0-s verzidjaval forditottuk -O2 optimaliz4cids szinten és 64 bites médban Linux
kernel felett futtattuk.

A gorbék esetében az értelmezési tartomanyon 1000 darab egyenld kozi osztépontot vettiink fel, s
ezekben szamoltuk ki a gorbepont helyét. A feliiletek esetében mindkét paraméterirdnyban ugyanazzal a
KC-térrel szdmoltunk és irdnyonként 50-50 osztépontot vettiink fel az értelmezési tartoméanyon.

Léthat6, hogy magas dimenzidszdmu terek folott értelmezett gorbék és feliiletek esetében a megjele-
nités mar nem mondhaté valés idejlinek akkor, ha mozgas kozben is szeretnénk latni az egyes elemeket.
Ezen egyrészt javithatunk gy, hogy a mindségbdl feladldozva kevesebb osztopontot haszndlunk. Ugyan-
akkor megfigyelhetjiik, hogy a keverdfiiggvények értékei nem valtoznak a kontrollpontok, illetve a teljes
gorbe vagy feliilet transzformdcidjakor, ezért ezeket a fiiggvényértékeket (és derivéltakat) egy gyorsi-
totarban megorizhetjiik egészen addig, amig a KC-tér, illetve az osztépontok szama valtozatlan marad.
Az alkalmazasban a feliiletek megjelenitéséhez hasznéltunk ilyen gyorsitétarat, melynek eredményeként
megszint a l4that6 késés az egérkurzor és egy kontrollpont mozgdsa kozott, amikor annak helyét meg-

valtoztattuk.

3.2. Példak

3.2.1. Egy logaritmikus spiral eloallitasa

Az alkalmazas segitségével dllitsuk el6 az
y= eit sin(t) 3.1

logaritmikus spirdlt, ahol ¢ € [0, 37].

sz

Figyeljiik meg, hogy a B-gorbékkel torténd egzakt leirdshoz sziikséges lesz felvenni az
a,B Lt Ly .
ETS? = <{1 eit cos(t), e sm(t)}> (3.2)

KC-teret, melynek hagyomdanyos bazisfiiggvényeibdl eldallithaté a (3.1)-es paraméteres alak, ahol az
[, 3] intervallumot az I/ (Mgﬁ) kritikus hosszndl révidebbre kell dllitani (ezt a feltételt grafikusan
fogjuk ellendrizni). Az egzakt leiras bedllitdsahoz tehdt a 0 és % +1 gyokok sziikségesek, ugyanis a (3.2)-
es tér az ezek 4ltal meghatdrozott y(3) — %y@) + %y(l) = 0 linedris homogén differencidlegyenlet
megolddastere.

Inditsuk el az alkalmazast és az eszkoztaron kattintsunk az Add Curve gombra. A megjelend gorbe
lesz a spirdl els6 fve. A Curve fiilon kattintsunk a Setup EC Space gombra és allitsuk be a gyokoket a 3.1.

abranak megfelelGen. Ha a teljes [0, 37 intervallumot adtuk volna meg értelmezési tartomédnynak, a 3.2.
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

Setup EC Spaces

Setup Parameters | Preview NB Bases

Definition Domain: Zeros of the Characteristic Polynomial: F Add New

[ 0.000000 = 1.570796 = ]
1 Re(2): abs( Im(2) ) Multiplicity: |1

Re(z): | 0.250000 + abs(Im(z)): |1.000000 < Multiplicity: |1 |%| |Delete

Notes:

The EC Space will be represented by the roots of
its characteristic polynomial. If a complex number
is a root, then its conjugate will become another
one automatically, with the same multiplicity (it
does not have to be defined separately).

The root 0+0i must have at least a multiplicity of
one. it can not be deleted

The same root can not be given twice, please
provide the correct multiplicity instead.

Load Existing Setup | | Save For Later Use Undo Changes Save Cancel

3.1. abra. Az els6 iv KC-terének beallitasa

dbran lathat6 eltorzult fiiggvényeket lattuk volna az eldénézeti fiilon, a sziikséges bazisfiiggvényekbdl
alkotott tér ugyanis nem KC tipusu ezen az intervallumon, tehdt nem létezik NB-bdzis. Kisérletezéssel

beldthatjuk, hogy az értelmezési tartomdny 5 hosszi részekre vald feldaraboldsa mar megfelel, ezért

s
)
paramétereket elmenteni a Save For Later Use gombra kattintva, a tovabbi ivek esetében ugyanis csak

az elsd iv értelmezési tartomdnyat a [O ] intervallumra éllitottuk a 3.1. dbran. Erdemes a bedllitott
az értelmezési tartomdnyt kell véltoztatni.

Mentsiik le a KC-tér beallitasat, majd allitsuk be az egyiitthatokat az egzakt leirashoz az Update
Control Points For Exact Description gombra kattintva. A (3.1)-es paraméteres alaknak megfelelGen
a 3.3. 4dbrdn l4that6 egyiitthat6kat kell megadnunk. Az Update gombra kattintva az elsd iv a végleges

helyére keriil.

Setup EC Spac

Setup Parameters | Preview NB Bases

Definition Domain: [ 0.000000, 9.424778 ]

Differential Equation: y'* - 0.5-y + 1.0625-y) = 0

Ordinary Basis Functions: 1, e%2**.cos(x), e®2?**:sin(x)

NB Basis Functions: Background Color: [_.. |

save Cancel

3.2. dbra. Tl nagy értelmezési tartomény, melyen a differencidlegyenlet megoldastere nem KC tipusu
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

Setup For Exac

Setup for Exact Description

On this popup you can set up the coefficients of the parametric description of a curve (surface) and update the control points of the selected EC
B-curve (B-surface) to get an exact description.

1 e®*Ucos(u) 025U -sin(u)

| ox 0.000000 & 1.000000 |2 0.000000 &
y: 0.000000 & 0.000000 |+ 1.000000 &
z: 0.000000 + 0.000000 |3 0.000000 3
7 v
Summary:

x = %2> 4-cos(u)
y = €%%54sin(u)
z=0

‘ b

Load Coefficients From File | | Save Coefficients To File Update Cancel

3.3. dbra. Az egzakt lefrashoz sziikséges egyiitthatok

A fentebbi eljardst megismételve az értelmezési tartomény tovabbi 6t darabjdra az eredeti logaritmi-

kus spirdldarab egy B-gorbék segitségével torténd egzakt lefrasat kapjuk meg, mely a 3.4. dbran lathat6.

(a) az 1vek és kontrollpoligonjaik (b) elsérendi derivaltak

3.4. dbra. A (3.1)-es logaritmikus spiral
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

27 7

3.2.2. Egy vegyes exponencialis-trigonometrikus feliilet el6allitasa

Allitsuk el egzakt mddon a kovetkezd feliiletet ([R6th, 2017], (30)-as feliilet):

89 (u, v)
s(u,v) = |s'(u,v)
(u

,0)

ahol (u,v) € [30%7 507”] X [_TW’ 5{], wo = é és w) = % Ahhoz, hogy B-feliilettel egzakt leirdst

végezziink, u irdnyban az

(1 — o) cos(u) (§ + cos(v))
= | (e*9% — 1) sin(u) ( + cos(v ) , (3.3)
7

— 1" —sin(v) + e“*" sin(v)

ET?O’BO = ({1, cos(u), sin(u), €%, 1", " cos(u), e**"sin(u): u € oo, Bo]} ),

v irdnyban pedig a
Tglvﬁl := ({1, cos(v), sin(v) : v € [aq, B1]})

KC-tereket kell felvegyiik, ahol Sy — ag > 0 és 51 — a; > 0 kisebbek kell legyenek, mint a megfeleld

terek (és derivaltjaik) kritikus intervalluma (mely tulajdonsdgokat grafikusan fogunk ellendrizni).
Inditsuk el az alkalmazast és a View fiilon kattintsunk az Add Surface gombra. A megjelend feliilet

még nem a megfeleld tipusi KC-terekre épiil. Valtoztassuk meg az u paraméterirdnynak megfelel6 teret

a Surface fiil Setup EC Space U gombijara Kattintva. Allitsuk be a gyokoket az E']I‘O‘”B tér hagyomanyos

30 507
8 1 8

valasztjuk értelmezési tartomédnynak, a fiiggvények alakja nem megfeleld (vagyis kisebb intervallumon

bazisfiiggvényeinek megfeleléen (1d. 3.5. dbra), majd vegyiik észre, hogy ha a [ } intervallumot

lesz csak KC tipust a tér, ez kisérletezéssel vagy az elméleti kritikus hossz kiszdmitdsdval is megkapha-

307 3571 [35J 404] [40777 454} 5 [4577 507
s> 8l Ll'sg g ll'878 88

jelenti, hogy u irdnyban négy savra fogjuk osztani a feliiletet. A 3.5. dbran lathat6 esetben ezek koziil az

td). Jelen esetben ilyen intervallumok lesznek a [ ] ami azt
elsé intervallumot vélasztottuk. Célszer( (fajlba vagy memoridba) menteni a bedllitast a Save For Later
Use (mentés késdbbre) gombra kattintva, hiszen a soron kdvetkez foltok esetében mar egydltaldan nem,
vagy pedig csak az értelmezési tartomdnyon kell majd véltoztatni.

Allitsuk most be a v-irdnyd KC-teret. Itt csak egy valés gyokot (0) és egy komplex gyokpart (04 11)

kell megadnunk. A teljes [==, 2] intervallumon megint nem rendelkezik KC tulajdonsdggal a konst-
rukcid, viszont a [%’T, %] [g, 3?”] és [‘%’r, %’r] intervallumokon mér igen, tehdt v irdnyban hdrom sdvra

7z

bontjuk a feliiletet (igy az 6sszesen tizenkét foltbdl fog eldallni). Hasznaljuk most az elsd intervallumot
([5F, 5]). Ekkor az NB-bizisfiiggvények alakja a 3.6. dbran lathatd.

Végiil sziikséges a kontrollpontokat bedllitanunk gy, hogy a feliileti folt tényleg az eredeti feliilet egy
(az értelmezési tartomény lesziikitései dltal meghatdrozott) darabjat irja le. Ennek céljabol a megfelel
egylitthatokat be kell tolteniink az egzakt leirasért felelés dialégusablakba, melyet az Update Control
Points For Exact Description gomb lenyomasaval érhetiink el. A megfelel paraméterek bedllitasa utan
(Id. 3.7. abra) ismét érdemes az egyiitthatokat elmenteni, hiszen minden feliileti folt esetén ugyancsak
ezekre lesz sziikség.

Ezek utan a 3.8. dbran lathaté feliileti folt jelenik meg. A teljes feliilet leirasdahoz az el6bbi 1épéseket

el kell végezniink mind a tizenkét lehetséges intervallumpdrositas esetén. Jelentésen megkonnyithetik a
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

Setup EC Spaces X

Setup Parameters Preview NNB Bases
Definition Domain: Zeros of the Characteristic Polynomial: r Add New

[ 11.388273 C, 13.351768 ° ]

-
b

Relz): abs{ Imfz) }: Multiplicity:

-
G

Re(z): | 0.000000 Delete

abs( Im(z) ): | 1.000000

[

Multiplicity:

Relz): |0.053051

[

abs( Im(z) ): | 1.000000

ED

Multiplicity: |1 |%| | Delete

¥

Relz): |0.053051

abs(Im(z) J: | 0.000000 Multiplicity:

-
»

Delete

o
G

-
b

Re(z): |0.106103 abs( im(z) ): | 0.000000 Multiplicity: Delete

Notes:

The EC Space will be represented by the roots of
its characteristic polynomial. If a complex number
is a root, then its conjugate will become another
one automatically, with the same multiplicity (it
does not have to be defined separately)

The root 0+0i must have at least a multiplicity of
one, it can not be deleted.

The same root can not be given twice, please
provide the correct multiplicity instead

Load Existing Setup | | Save For Later Use Cancel

3.5. dbra. Az elsé feliileti folt u irdnyd KC-terének beallitasa

Setup Parameters | Preview NNB Bases

Definition Domain: [ -1.047197, 1.047197 ]
Differential Equation: y*) + y(*) = 0

ordinary Basis Functions: 1, cos(x), sin(x)

NNB Basis Functiens: Background Color: .. |

Cancel

3.6. abra. Az elsé feliileti folt v-irdnytd KC-terének NB-bazisfiiggvényei

dolgunkat a menet kdzben készitett mentések (dltaldban elég lesz csak az intervallumokat atdllitani és a
kontrollpontokat befrissiteni minden folt esetén). A kész feliilet a 3.9. dbrén lathato.

Az igy elballitott feliilet egyes darabjaira sziikség szerint alkalmazhatjuk a rendszamnovelési és fel-
osztasi algoritmusokat. A kontrollpontok is elmozdithatéak az egérrel, viszont a (nullad vagy magasabb
rendben folytonos) illesztések megtartdsa az alkalmazdsban jelenleg még nem implementélt (de értékes
tovabbfejlesztési lehetGséget jelent).

Ezek utan elvégezhetjiik példaul a 3.9. dbra egyik feliileti foltjanak u irdnyu felosztasat az értelmezési
tartomany harmadolépontjanal (1asd a 3.10. dbra), majd a finomabb kontroll érdekében rendszamnédve-
1ést is végrehajthatunk a kijeldlt folton, példaul a v paraméterirdnydban eggyel megndvelve a 0 gyok

multiplicitdsat (14sd a 3.11. dbra).
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

Setup for Exact Description

B-curve (B-surface) to get an exact description.

1

Load Coefficients From File Save Coefficients To File

cos(u) - cos(v)

a

1 cos(v) sin(v) cos(u)
x: 0.000000 3 0.000000 3 0.000000 3 1.250000 3
¥y 0.000000 2 0.000000 & 0.000000 2 0.000000 &
z 7.000000 & 0.000000 -1.000000 % 0.000000
‘
Summary:
x=1.25-cos(u) + cos(u)-cos(v) - 1.25e%%3ucqg(y) -
y =-1.25"sin(u) - sin(u)-cos(v) + 1.25-e®05305 ugin(y)
z=7 - sin(v) + 0953051 gin(y) . 0l06103u

0053051,

1.000000

0.000000

0.000000

0053051,

On this popup you can set up the coefficients of the parametric description of a curve (surface) and update the control points of the selected EC

cos(u) - sin(v)

0.000000

0.000000

0.000000

cos(u) - cos(v)

sin(u) * cos(v)

sinfu) <
0.000000
-1.250000 |2

0.000000

update Cancel

3.7. dbra. Az egzakt leiras bedllitasa

3.8. abra. Az eldallitott elsé feliiletdarab (elforditva)

3.9. dbra. A teljes el6allitott feliilet (elforditva)
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3. FEJEZET: ALKALMAZASI LEHETOSEGEK

3.10. dbra. A feliilet egyik darabjan felosztast végeztiink

3.11. dbra. Rendszamnévelés v paraméterirdnyban
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Osszefoglalo

A Kkiterjesztett Csebisev-terek felett értelmezett B-gorbék és B-feliiletek az ismert és gyakorlatban
hasznélt gorbe- és feliilettipusok nagy részének egzakt leirdsat képesek dltaldnosan megvaldsitani. Hét-
ranyuk a specializalt kever6fiiggvény-rendszerekkel szemben a nagyobb kiértékelési koltség, illetve bi-
zonyos esetekben az algoritmusok gyengébb numerikus stabilitdsa. Ugyanakkor szdmos elénnyel rendel-

keznek:

a fiiggvénytér és az értelmezési tartomany médositasa altal megengednek szabadon allithaté alak-
vagy fesziiltségi paramétereket;

— magasabb, vagy akdr végtelen rendd (parcidlis) derivaltakra vonatkozé precizitdst biztositanak;

— olyan gyakorlati felhasznédlhatésdggal és ipari jelent6séggel bird, transzcendentélis gorbék / felii-
letek egzakt lefrasat is lehetvé teszik, melyek a napjaink modellezérendszereiben szabvanyként
hasznalt, nem feltétleniil egyenletes csomoévektord, raciondlis B-spline-gorbékkel / feliiletekkel

legfeljebb csak kozelithetek;

— a hagyomdnyos paraméteres alakban adott, de nem tortfiiggvényekkel leirt gorbék / feliiletek ese-

27z

tén csupan kontrollpont-alapd, stlyvektor / silymatrix nélkiili egzakt el6allitast biztositanak;

— kondiciészdm és numerikus kiértékelés szempontjabdl, valamely fiiggvénytér nemnegativ normali-
z4lt B-bazisa az egyértelmi olyan teljesen pozitiv, linedrisan fiiggetlen normalizalt fiiggvényrend-
szer, mely optimalisan stabil (Id. [Mainar és Pena, 1999, 3.4. kovetkezmény]) az adott fiiggvénytér

0sszes nemnegativ bazisa koziil.

A relevans elméleti eredmények felidézése utan bemutattuk a dolgozatot kisér6 alkalmazast, mely
ezen eredményeket probalja meg gyakorlatba iiltetve szemléltetni mindenek el6tt a kisérleti tanulma-
nyozhatdsdg céljabol. Megvaldsitottuk az NB-bazisfiiggvények (nullad- és magasabb rendd derivaltjai-
nak) kiértékelését, a gorbék és feliiletek rendszamnovelését és felosztdsét, illetve a paraméteres alakban
megadott gorbék és feliiletek egzakt leirdsat.

Az implementacié sordn tanulsdgos volt az egyes egéresemények (kijelolések, mozgasok) kezelésé-
nek megvaldsitasa is, illetve a Ot keretrendszer signal-slot mechanizmusédnak felhasznaldsa a felhaszna-
16i feliilet bonyolultabb elemei k6zotti kommunikacié megvaldsitasara.

Az alkalmazasban nem szerepld, de hasonlé modellezd rendszertdl elvarhaté tulajdonsagok szama
jelentdsen nagy, tovabbfejlesztési lehetség példaul az elemek (adott folytonossagi rendd) illesztése, egy
a véltoztatdsok visszaforditdsdra alkalmas kiegészités (undo-redo mechanizmus), illetve foltokbdl all6

sdvok kigenerdldsanak lehetdsége (példdul az adott értelmezési tartomany automatikus felosztasa révén).
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