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3.2.1. Egy logaritmikus spirál előállítása . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2. Egy vegyes exponenciális-trigonometrikus felület előállítása . . . . . . . . . . . 43
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Bevezető

Jelen dolgozat célja egy példaalkalmazás keretein belül bemutatni a kiterjesztett Csebisev függvény-
terek (KC-terek) felett értelmezett B-görbék és B-felületek felhasználási lehetőségeit a kontrollpont-
alapú grafikus modellezésben.

Az 1. fejezet az elméleti háttér bemutatására irányul. A felhasznált eredmények és numerikus mód-
szerek, illetve ezek helyességének és hatékonyságának vizsgálata [Róth, 2017]-ben megtalálható, jelen
dolgozatban az innen átvett anyag összefoglalására törekszünk.

A tárgyalt numerikus módszerek egy része a kiterjesztett Csebisev-terek fölött értelmezett, úgyneve-
zett B-görbék és B-felületek előállításához szükséges keverőfüggvények és ezek deriváltjainak kiszámí-
tására irányul. Megvalósítható továbbá a görbék és felületek rendszámnövelése (mely a használt KC-tér
dimenziószámának növekedését vonja maga után), ezek felosztása (az értelmezési tartomány tetszőleges
belső pontja körül), illetve a paraméteres alakban megadott görbék és felületek kontrollpont-alapú egzakt
leírása B-görbékkel és B-felületekkel (melyet egy, a KC-tér hagyományos és egyedi normalizált B-bázisa
közötti bázistranszformáció tesz lehetővé).

A 2. fejezetben egy OpenGL-t felhasználó C++ alkalmazást mutatunk be, melynek célja az elméleti
eredmények alkalmazási lehetőségeinek szemléltetése. A felhasználói felület elemeit a Qt Widgets ke-
retrendszer biztosította, a saját grafikus elemeket viszont OpenGL segítségével rajzoltuk ki, így a görbék
és felületek megjelenítésének paraméterei testreszabhatók (pl. hány görbepontnak megfelelő adat legyen
tárolva a görbékhez társított vertex-pufferekben). Az ismertetett numerikus algoritmusok implementáci-
ójának párhuzamosítására az OpenMP könyvtárat használtuk.

Az alkalmazásban olyan KC-tereket tudunk definiálni és kezelni, amelyek egy konstansegyütthatós
lineáris homogén differenciálegyenlet megoldásterének a megfelelő intervallumra való leszűkítéseként
állnak elő. Egy ilyen differenciálegyenletet a felhasználó a gyökeinek (illetve ezek multiplicitásának)
megadásával tud bevinni a rendszerbe.

A 3. fejezetben példákon keresztül mutatjuk be az alkalmazás használatát, illetve a hatékonyság
szemléltetése céljából néhány futásidőre vonatkozó mérési eredményt is ismertetünk.

Túl nagy dimenziószámok, illetve túl kicsi értelmezési tartományok esetén sajnos nem elkerülhető
a numerikus instabilitás, a gyakorlatban viszont megfelelően használható az implementáció, mivel a fe-
lületeket általában kisebb darabokból állítják elő, melyeket megfelelő folytonossági rend mellett össze-
illesztve kezelnek a CAD-rendszerek. A módszerek hatékonysága az általánosság ellenére sem jelent
gondot, viszont kevésbé jó, mint azon eljárásoké, melyek egy bizonyos függvénytérre specializálódnak.

Köszönettel tartozom témavezetőmnek, Róth Ágostonnak, aki mind az elméleti eredmények megér-
tésében, mind a felhasznált numerikus módszerek és a szükséges OpenGL eljárások implementálásában
jelentős segítséget nyújtott.
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1. fejezet

Elméleti háttér
Összefoglaló: Bemutatjuk a felhasznált elméleti alapfogalmakat és eredményeket, minden
esetben a megjelölt forrásműveket követve. Az értelmezések, tételek és bizonyítások leírása
az adott művekben használt szerkezetet és jelölésrendszert követi.

1.1. Kontrollpont-alapú modellezés

A grafikus modellezésben gyakran használt technika, hogy görbéket és felületdarabokat nem para-
méteres alakban, hanem kontrollpontok és ezekhez társított keverőfüggvények lineáris kombinációjaként
adunk meg. A kontrollpontok görbék esetében úgynevezett kontrollpoligont, felületeknél pedig kontroll-
hálót alkotnak. Ezáltal a felhasználónak lehetősége van módosítani a görbe vagy felület alakját (az egyes
kontrollpontok helyének megváltoztatása által), ugyanakkor megmaradnak a keverőfüggvények jellegé-
ből származó és a modellezésben hasznos tulajdonságok (pl. adott rendű folytonosság, a kontrollpontok
lokális hatása, konvexitásmegőrzés, hullámzás- és hodográfcsökkentés, konvex burok tulajdonság stb.).

Egy görbét leggyakrabban a 
c : [a, b]→ Rδ, δ ≥ 2

c(u) =
n∑
i=0

pifi(u)
(1.1)

alakban adunk meg, ahol n ≥ 1, a pi ∈ Rδ vektorok a kontrollpontok, az fi keverőfüggvények pedig
az [a, b] intervallumon értelmezett folytonos valós függvények, melyek normalizáltak, nemnegatívak,
legalább n-edrendben folytonosan differenciálhatóak és lineárisan függetlenek.

A felületek alakja tenzorszorzat jellegű:
s : [a, b]× [c, d]→ Rδ, δ ≥ 3

s(u, v) =

n∑
i=0

m∑
j=0

pijfi(u)gj(v).
(1.2)

Itt a pij ∈ Rδ pontok egy kontrollhálót alkotnak. Az u- és v-irányú keverőfüggvény-rendszerek ez
esetben lehetnek akár különböző dimenziószámúak, illetve különböző típusúak is:

F =
{
fi : [a, b]→ R

}n
i=0
, G =

{
gj : [c, d]→ R

}m
j=0

.
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1. FEJEZET: ELMÉLETI HÁTTÉR

A keverőfüggvények rendszere meghatározza a görbék és felületek tulajdonságait, emiatt érdemes a
megfelelő függvények megválasztására külön figyelmet fordítani. A gyakorlatban a leggyakrabban hasz-
nált görbék (felületek) az úgynevezett Bézier-görbék (felületek), melyek esetében a keverőfüggvények
az n-edfokú Bernstein-polinomok:

B =

{
Bn,i : [0, 1]→ R, Bn,i(u) =

(
n

i

)
ui(1− u)n−i

}n
i=0

,

b(u) =
n∑
i=0

piBn,i(u), u ∈ [0, 1] .

1.1. ábra. Harmadfokú Bernstein-polinomok (u ∈ [0, 1])

A teljesség igénye nélkül íme néhány tulajdonság (részletesebb leírásért ld. [Róth, 2018], [Farin,
2002], illetve [Juhász, 1995]), melyeket általában elvárunk egy keverőfüggvény-rendszertől, illetve az
általa előállított görbéktől – hasonló tulajdonságok fogalmazhatók meg a felületek esetében is:

1. Affin transzformációtól való függetlenség: a görbe legyen invariáns az affin transzformációkra
nézve, tehát ha T : Rδ → Rσ egy affin transzformáció, akkor

T (c(u)) = T

(
n∑
i=0

piFi(u)

)
=

n∑
i=0

T (pi)Fi(u), ∀u ∈ [a, b]

teljesüljön. A gyakorlatban használt keverőfüggvények egységfelbontást alkotnak, azaz

n∑
i=0

Fi(u) = 1,∀u ∈ [a, b].

Direkt számítással belátható, hogy ekkor a generált görbék és felületek függetlenek az affin transz-
formációktól.

2. Konvex bennfoglalás: ha az egységfelbontás mellett a függvények pozitívak is, azaz

Fi(u) ≥ 0, ∀u ∈ [a, b], ∀i ∈ {1, 2, ..., n},

akkor a generált görbe mindig a kontrollpoligonja konvex burkának belsejében marad, hiszen az
egyes görbepontok a kontrollpontok egy-egy konvex kombinációjaként állnak elő.

3. Monotonitás megőrzése: azért fontos, hogy a kontrollpoligon és a görbe vonalainak bejárási iránya
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1. FEJEZET: ELMÉLETI HÁTTÉR

mindig megegyezzen. Azt mondjuk, hogy egy

F = {Fi : [a, b]→ R}ni=0

függvényrendszer megőrzi a monotonitást, ha ∀λi ∈ R esetén

λ0 ≤ λ1 ≤ · · · ≤ λn ⇒
n∑
i=0

λiFi(u)

növekvő függvény (u ∈ [a, b]).

4. Végpontbeli interpoláció: az intuitív kezelhetőség érdekében azt is elvárhatjuk, hogy a

c(a) =

n∑
i=0

piFi(a) = p0, illetve c(b) =

n∑
i=0

piFi(b) = pn

egyenlőségek teljesüljenek, azaz a görbe az első kontrollpontból induljon és az utolsó kontroll-
pontban érjen véget.

5. Lineáris függetlenség: ahhoz, hogy tetszőleges meglévő adatpontok interpolációját is biztosítani
tudjuk, a függvényeket úgy kell megválasztani, hogy lineárisan függetlenek legyenek.

A kutatásban ezért az ismert és gyakran előforduló függvényterek (függvényekből álló lineáris vek-
torterek) esetében szoktak olyan bázist keresni, mely teljesíti a keverőfüggvényektől elvárt tulajdonsá-
gokat is (tehát modellezésre alkalmas). Bár a Bézier-görbék a legtöbb célra megfelelnek, polinomiális
jellegük miatt bizonyos esetben pontatlanabb közelítést engednek csak meg, mint más függvénytér (gon-
dolhatunk például arra, hogy a szinuszfüggvény közelítésére a polinomok kevésbé alkalmasak).

1.2. Kiterjesztett Csebisev-terek (KC-terek)

A [Róth, 2017]-ben leírtakat követve elevenítsük fel a kiterjesztett Csebisev függvényterek fogalmát.
Legyen n ≥ 1 egy rögzített egész szám és tekintsük a ϕn,i(u) bázisfüggvényekből álló

Fα,βn =
{
ϕn,i(u) : u ∈ [α, β]

}n
i=0
, ϕn,0 ≡ 1 (1.3)

rendszert, ahol ϕn,i ∈ Cn ([α, β]) és −∞ < α < β < ∞. Értelmezés szerint (ld. [Karlin és Studden,
1966]) azt mondjuk, hogy az

Sα,βn :=
〈
Fα,βn

〉
:= spanFα,βn (1.4)

(n+ 1)-dimenziós függvénytér kiterjesztett Csebisev-típusú, ha

– bármely 0 ≤ r ≤ n egész számra,

– bármely szigorúan növekvő α ≤ u0 < u1 < ... < ur ≤ β csomópontrendszerre,
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1. FEJEZET: ELMÉLETI HÁTTÉR

– tetszőleges {mk}rk=0 egész számokra (multiplicitásokra) melyekre teljesül, hogy
∑r

k=0mk =

n+ 1, és

– bármely
{
ξk,l
}r, mk−1
k=0, l=0

valós számokra

mindig létezik egy és csakis egy

f :=
n∑
i=0

λn,iϕn,i ∈ Sα,βn , λn,i ∈ R, i = 0, 1, ..., n (1.5)

függvény, mely kielégíti a Hermite-féle

f (l)(uk) = ξk,l, l = 0, 1, ...,mk − 1, k = 0, 1, ..., r (1.6)

interpolációs feladat feltételeit és ezen egyenletrendszer együtthatómátrixának előjeltartó determinánsa
szigorúan pozitív bármely, a fentiekben leírt megengedett paraméterbeállítás esetén. A KC-tér értelme-
zését tekintve az 1 ≡ ϕn,0 ∈ Sα,βn feltétel nem szükséges, jelen esetben viszont a konstansokat is az Sα,βn
részévé tettük annak érdekében, hogy minden bázisa normalizálható legyen.

Zérushelyek szempontjából a definícióból következik, hogy bármely nem azonosan nulla eleme Sα,βn -
nak legfeljebb n-szer válik nullává az [α, β] intervallumon.

A továbbiakban Fα,βn -ra az Sα,βn hagyományos bázisaként hivatkozunk, és feltételezzük, hogy a de-
riváltak n-dimenziós DSα,βn :=

{
f (1) : f ∈ Sα,βn

}
tere szintén KC-típusú az [α, β] intervallumon. A

[Carnicer és Peña, 1995]-nek az 5.1. tételét, illetve a [Carnicer et al., 2004]-nek a 4.1. tételét felhasz-
nálva kijelenthetjük, hogy az Sα,βn vektortérnek ezen feltételek mellett létezik szigorúan teljesen pozitív
bázisa is (azaz olyan bázisa, melynek minden kollokációs mátrixának minden minorja szigorúan pozitív).
Mivel a konstans 1 ≡ ϕn,0 függvény eleme Sα,βn -nak, az említett szigorúan pozitív bázis normalizálható,
tehát a vektortérnek van egy egyedi normalizált B-bázisa (úgynevezett NB-bázisa):

Bα,βn =
{
bn,i(u) : u ∈ [α, β]

}n
i=0
. (1.7)

A [Carnicer és Peña, 1995] 5.1. tételének és a [Mazure, 1999] (3.6)-os egyenletének megfelelően a
Bα,βn bázis az egységfelbontás (

∑n
i=0 bn,i(u) ≡ 1, ∀u ∈ [α, β]) mellett teljesíti a következő tulajdonsá-

gokat is:

bn,0(α) = bn,n(β) = 1, (1.8)

b
(j)
n,i(α) = 0, j = 0, 1, ..., i− 1, b

(i)
n,i(α) > 0, (1.9)

b
(j)
n,i(β) = 0, j = 0, 1, ..., n− 1− i, (−1)n−ib(n−i)n,i (β) > 0. (1.10)

A továbbiakban bemutatott algoritmusok érvényesek bármilyen Sα,βn KC-tér esetén amely teljesíti a
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1. FEJEZET: ELMÉLETI HÁTTÉR

fentebbi feltételeket, az implementációjukban viszont feltételezzük, hogy Sα,βn az (n+ 1)-edrendű

n+1∑
i=0

γiv
(i)(u) = 0, γi ∈ R, u ∈ [α, β] (1.11)

konstansegyütthatós homogén lineáris differenciálegyenlet megoldástere.
A megoldásteret a differenciálegyenlet karakterisztikus polinomjának (esetleg magasabb rendű) gyö-

kei által meghatározott hagyományos bázisfüggvények feszítik ki. A karakterisztikus polinom

pn+1(z) =
n+1∑
i=0

γiz
i, z ∈ C (1.12)

alakba írható és mivel biztosítani akarjuk, hogy ϕn,0 ≡ 1 ∈ Sα,βn , meg fogjuk követelni, hogy z = 0 a
karakterisztikus polinomnak legalább egyszeres gyöke legyen.

A megoldástér eltolásfüggetlen, C∞ ([α, β]) osztályú és a megfelelően kicsi β−α ∈ (0, ln) hosszú-
ságú intervallumra vett leszűkítése KC-típusú, ahol ln > 0 az úgynevezett kritikus hossz, melyet a
következőképpen tudunk meghatározni (ld. [Carnicer et al., 2004, 3.1. kijelentés]):

– jelölje
W[vn,0,vn,1,...,vn,n](u) :=

[
v
(j)
n,i(u)

]n, n
i=0, j=0

, u ∈ [α, β] (1.13)

az (1.11) azon sajátos

vn,i :=

n∑
k=0

ρi,kϕn,k ∈ Sα,βn ,
{
ρi,k
}n
k=0
⊂ R, i = 0, 1, ..., n (1.14)

integráljainak Wronski-féle mátrixát, melyek teljesítik a
v
(j)
n,i(α) = 0, j = 0, 1, ..., i− 1,

v
(i)
n,i(α) = 1,

v
(j)
n,i(β) = 0, j = 0, 1, ..., n− 1− i

(1.15)

kezdeti feltételeket, tehát a {vn,i(u) : u ∈ [α, β]}ni=0 egy bikanonikus bázis az [α, β] intervallum
felett, úgy hogy az (1.13)-as Wronski-féle mátrix u = α-ban egy alsó háromszögmátrix, az átlón
pozitív (egység) elemekkel;

– tekintsük a következő függvényeket (Wronski-féle determinánsokat):

wn,i(u) := detW[vn,i,vn,i+1,...,vn,n](u), i =
⌊
n
2

⌋
+ 1, ..., n, (1.16)

θn,i(u) := (−1)n(n+1−i) detW[vn,i,vn,i+1,...,vn,n](−u), i =
⌊
n
2

⌋
+ 1, ..., n, (1.17)

8
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és értelmezzük az

ln := min
i=bn2 c+1,...,n

min
{
|u− α| : wn,i(u) = 0 vagy θn,i(u) = 0, u 6= α

}
(1.18)

kritikus hosszt (írhatjuk, hogy ln = +∞ abban az esetben, ha az (1.16)-os Wronski-féle determi-
nánsoknak nincs α-tól különböző valós gyöke, mitöbb ln végtelen, ha az (1.12)-es karakterisztikus
polinomnak csak valós gyökei vannak, illetve véges, ha a karakterisztikus polinomnak tényleges -
nem eltűnő képzetes résszel rendelkező - komplex gyökei is vannak).

A deriváltak DSα,βn terének kritikus hosszát jelölje l′n. Ahhoz, hogy biztosítsuk az NB-bázis lé-
tezését Sα,βn -ban (ld. [Carnicer et al., 2004, 4.1. tétel]) a továbbiakban mindig feltételezzük, hogy
β ∈ (α, α+ l′n). A β − α ∈ (0, l′n) intervallumhossz egy alakparaméternek is felfogható. Az egyér-
telműség érdekében ln és l′n mellett az l

(
Sα,βn

)
és l′

(
Sα,βn

)
:= l

(
DSα,βn

)
jelöléseket is használni

fogjuk.
A hagyományos bázis alakja megkapható a gyökökből a differenciálegyenletek megoldásánál meg-

szokott módon:

– ha z0 ∈ R egy m-szeres gyöke az (1.12)-es karakterisztikus polinomnak (m ≥ 1), akkor a hozzá
tartozó bázisfüggvények ukez0u alakúak (k = 0, 1, ...,m− 1),

– ha z0 = a+ bi ∈ C \R (a, b ∈ R, b 6= 0, i2 = −1) egy m-szeres gyöke a polinomnak, akkor az
a− bi szintén m-szeres gyöke és a 2m darab gyök által meghatározott bázisfüggvények:{

ukeau cos(bu), ukeau sin(bu)
}m−1
k=0

, u ∈ [α, β].

A bemutatott algoritmusok nem feltételezik, hogy (1.12) egy páros vagy páratlan függvény, de ha
ezek egyike teljesül, akkor az általa meghatározott KC-tér tükrözésinvariáns is lesz. Tekintsük a [Róth,
2017]-ben bemutatott példákat. Ha {ωk}nk=1 páronként különböző valós számok és az [α, β] értelmezési
tartomány hossza megfelelően rögzített, akkor a

pn+1(z) = zn+1,

p(n+1)2(z) = zn+1
n∏
k=1

(z2 + ω2
k)
n+1−k, illetve

p(n+1)2(z) = zn+1
n∏
k=1

(z2 − ω2
k)
n+1−k

karakterisztikus polinomok által meghatározott tiszta polinomiális, kevert algebrai-trigonometrikus és

9



1. FEJEZET: ELMÉLETI HÁTTÉR

algebrai-hiperbolikus KC-terek:

Pα,βn :=
〈
Pα,βn

〉
:=
〈
{1, u, ..., un : u ∈ [α, β]}

〉
,

dimPα,βn = n+ 1,

ATα,βn(n+2) :=
〈
Pα,βn ∪

{
ul cos(ωku), u

l sin(ωku)
}n, n−k
k=1, l=0

〉
,

dimATα,βn(n+2) = (n+ 1)2,

illetve

AHα,β
n(n+2) :=

〈
Pα,βn ∪

{
ul cosh(ωku), u

l sinh(ωku)
}n, n−k
k=1, l=0

〉
,

dimAHα,β
n(n+2) = (n+ 1)2,

melyek nemcsak transzláció-, hanem tükrözésinvariánsok is és természetesen rendelkeznek egyedi nor-
malizált B-bázissal.

Ha az NB-bázisfüggvényeket ismerjük, megfelelő számú kontrollpontot felvéve a szokványos módon
előállíthatjuk az úgynevezett B-görbéket és B-felületeket.

1.1. Értelmezés (B-görbe). A

cn(u) =
n∑
i=0

pibn,i(u), u ∈ [α, β], pi =
[
pli

]δ−1
l=0
∈ Rδ (1.19)

konvex kombinációt n-edrendű B-görbének nevezzük, ahol [pi]
n
i=0 a kontrollpoligont jelöli.

1.2. Értelmezés (B-felület). Ha

Bαr,βrnr =
{
bnr,ir(ur) : ur ∈ [αr, βr]

}nr
ir=0

, r = 0, 1

jelöli két KC-tér NB-bázisát, akkor az (1.19) típusú görbék tenzorszorzataként értelmezhetjük az

sn0,n1(u0, u1) =

n0∑
i0=0

n1∑
i1=0

pi0,i1bn0,i0(u0) bn1,i1(u1), (1.20)

u0 ∈ [α0, β0] , u1 ∈ [α1, β1] , pi0,i1 =
[
pli0,i1

]2
l=0
∈ R3

B-felületet, ahol a [pi0,i1 ]
n0, n1

i0=0, i1=0 mátrix alkotja a kontrollhálót.

10
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1.3. Az NB-bázisfüggvények (nullad- és magasabb rendű deriváltjainak)
előállítása

Amint definiáltunk egy Sα,βn KC-teret az Fα,βn hagyományos bázisának megadása által (mely a ka-
rakterisztikus polinom gyökeinek rögzítésével történik), elő kell állítanunk a Bα,βn egyedi normalizált
B-bázisát. Az NB-bázisfüggvények (nullad- és magasabb rendű) deriváltjai ugyanis nemcsak a görbe- és
felületpontok meghatározásában, hanem a később bemutatott algoritmusok számításaiban is megjelen-
nek. A továbbiakban az NB-bázis [Róth, 2017]-ben összefoglalt felépítési eljárását mutatjuk be.

Az Sα,βn KC-tér esetében a β − α ∈ (0, l′n) feltétel teljesülése biztosítja a Bα,βn NB-bázis létezését,
ennek felépítése ekkor a [Carnicer et al., 2004]-ben leírt eljárás segítségével valósítható meg.

Tekintsük a bikanonikus
{
vn,i(u) : u ∈ [α, β]

}n
i=0

bázist, melyet a az (1.15)-ös feltételek által
meghatározott (1.14)-es vonalintegrálok alkotnak. Legyen W[vn,n,vn,n−1,...,vn,0](β) a fordított sorrendbe
rendezett

{
vn,n−i(u) : u ∈ [α, β]

}n
i=0

rendszer u = β-ban vett Wronski-féle mátrixa és határozzuk meg
ennek az

L · U =W[vn,n,vn,n−1,...,vn,0](β)

Doolittle-féle LU felbontását ahol L egy alsó háromszögmátrix egyesekkel az átlóján, U pedig egy nem-
szinguláris felső háromszögmátrix.

Számítsuk ki ezek inverzét:

U−1 :=


µ0,0 µ0,1 · · · µ0,n

0 µ1,1 · · · µ1,n
...

...
. . .

...
0 0 · · · µn,n

 , L−1 :=


λ0,0 0 · · · 0

λ1,0 λ1,1 · · · 0
...

... · · ·
...

λn,0 λn,1 · · · λn,n

 ,

melyek segítségével fel tudjuk építeni az NB-bázist:

Bα,βn =
{
bn,i(u) = λn−i,0b̃n,i(u) : u ∈ [α, β]

}n
i=0
, (1.21)

ahol [
b̃n,n(u) b̃n,n−1(u) · · · b̃n,0(u)

]
=
[
vn,n(u) vn,n−1(u) · · · vn,0(u)

]
· U−1,

illetve [
λ0,0 λ1,0 · · · λn,0

]
= L−1 ·

[
1 0 · · · 0

]T
.

Ha az (1.12)-es karakterisztikus polinom páros vagy páratlan, akkor az általa meghatározott Sα,βn
KC-tér invariáns a tükrözésekre, így ebben a sajátos esetben a

bn,i(u) = bn,n−i(α+ β − u), ∀u ∈ [α, β], i = 0, 1, ...,
⌊
n
2

⌋
szimmetria is teljesül, ami azt jelenti, hogy elég csak a bázisfüggvények felét meghatározni (1.21)-ben.

1.3. Tétel (B-bázisfüggvények deriváltjai, [Róth, 2017, 2.3. tétel]). Az (1.21)-ben megjelenő bázisfügg-
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vények (nullad- és magasabb rendű) deriváltjainak kiszámítása a következő számításra redukálódik:

b
(j)
n,n−i(u) = λi,0b̃

(j)
n,n−i(u)

= λi,0

i∑
r=0

µr,iv
(j)
n,n−r(u)

= λi,0

i∑
r=0

µr,i

n∑
k=0

ρn−r,kϕ
(j)
n,k(u), ∀u ∈ [α, β], i = 0, 1, ..., n. (1.22)

Ha a KC-tér tükrözésinvariáns, akkor az (1.22)-es képletet csak az i = 0, 1, ...,
⌊
n
2

⌋
indexekre kell

alkalmazni, mivel ez esetben teljesül, hogy:

b
(j)
n,i(u) = (−1)jb(j)n,n−i(α+ β − u), ∀u ∈ [α, β], i = 0, 1, ...,

⌊
n
2

⌋
. (1.23)

1.4. Példa (Egy kilencdimenziós tükrözésinvariáns KC-tér). Tekintsük a

v(9)(u) + 6v(7)(u) + 9v(5)(u) + 4v(3)(u) = 0, u ∈
[
−π

2 ,
π
2

]
differenciálegyenletet, majd bontsuk tényezőkre a karakterisztikus polinomját:

p9(z) = z9 + 6z7 + 9z5 + 4z3

= z3
(
z2 + 1

)2 (
z4 + 22

)
, z ∈ C.

A gyökök és multiplicitásaik által meghatározott bázisfüggvények az

AT−
π
2
,π
2

8 =
〈
F−

π
2
,π
2

8

〉
=

〈{
ϕ8,0(u) = 1, ϕ8,1(u) = u, ϕ8,2(u) = u2,

ϕ8,3(u) = cos(u), ϕ8,4(u) = sin(u), ϕ8,5(u) = u cos(u),

ϕ8,6(u) = u sin(u), ϕ8,7(u) = cos(2u), ϕ8,8(u) = sin(2u)
}〉

(1.24)

9-dimenziós algebrai-trigonometrikus teret állítják elő (mely tükrözésinvariáns is, mivel a karakteriszti-
kus polinom páratlan). Ha bemenetként megadjuk p9 (esetleg magasabb rendű) gyökeit, az alkalmazás
ki tudja számolni és meg tudja jeleníteni a KC-térhez tartozó NB-bázisfüggvényeket, melyek az 1.2.
ábrán láthatók (a függvényeket az alkalmazás segítségével jelenítettük meg, majd utófeldolgozásként
címkéztük).

1.5. Példa (Egy hatdimenziós KC-tér, mely nem tükrözésinvariáns). Tekintsük a

v(6)(u)− 6v(5)(u) + 13v(4)(u)− 12v(3)(u) + 4v(2)(u) = 0, u ∈ [−1, 1]

12
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1.2. ábra. Az (1.24)-es AT−
π
2
,π
2

8 KC-tér NB bázisfüggvényei.

differenciálegyenletet, melynek karakterisztikus polinomja:

p6(z) = z2 (z − 1)2 (z − 2)2 , z ∈ C.

A gyökök által meghatározott bázisfüggvények az

AE−1,15 =

〈{
ϕ5,0(u) = 1, ϕ5,1(u) = u, ϕ5,2(u) = eu, ϕ5,3(u) = ueu,

ϕ5,4(u) = e2u, ϕ5,5(u) = ue2u
}〉 (1.25)

6-dimenziós vegyes algebrai-exponenciális teret állítják elő, melynek NB-bázisfüggvényei az 1.3. ábrán
láthatók. Mivel a karakterisztikus polinom nem is páros és nem is páratlan függvény, az előálló tér nem
lesz tükrözésinvariáns, amint az a bázisfüggvények alakjából is látszik.

1.3. ábra. Az (1.25)-ös AE−1,15 KC-tér NB bázisfüggvényei.

1.6. Példa (A β − α intervallumhossz alakváltoztatási hatása). Tekintsük a

p(z) = z3 + z2 = z(z2 + 1) (1.26)

13
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karakterisztikus polinom által generált

Tα,β1 =
〈{

1, sin(u), cos(u)
}〉

(1.27)

elsőrendű trigonometrikus teret, melynek kritikus hossza l′1 = π. Legyen α = 0, a β végpontnak pedig
feleltessük meg rendre a {0.1, 1, 1.5, 2} halmaz elemeit. Rögzített kontrollpontok esetén a különbö-
ző β értékeknek megfelelő terek NB-bázisfüggvényei által generált görbék alakja különböző (a β − α
intervallumhossz tehát alakparaméternek fogható fel). Ezt a hatást szemlélteti az 1.4. ábra.

1.4. ábra. A β paraméter hatása az (1.27)-es
KC-tér által generált görbe alakjára. A megjelenített (közös kontrollpontokkal rendelkező) görbék

esetében felhasznált értékek: β1 = 0.1, β2 = 1, β3 = 1.5, β4 = 2.

1.4. B-görbék és B-felületek rendszámnövelése

A rendszámnövelés célja, hogy a kontrollpontok száma nőjön (azaz finomabb alakváltoztatást tud-
junk megengedni a felhasználónak) úgy, hogy az új kontrollpontok által leírt görbe vagy felület az erede-
tivel megegyező maradjon. A következőkben a [Róth, 2017]-ben leírtak mentén haladva egy numerikus
eljárást tárgyalunk, amellyel B-görbék és B-felületek esetén megvalósítható a rendszámnövelés.

Tekintsük az Sα,βn és Sα,βn+1 KC-tereket úgy, hogy 1 ∈ Sα,βn ⊂ Sα,βn+1 és tételezzük fel, hogy
a deriváltak DSα,βn és DSα,βn+1 terei is KC-típusúak az [α, β] intervallumon, azaz 0 < β − α <

min
{
l′
(
Sα,βn

)
, l′
(
Sα,βn+1

)}
. A terek NB-bázisait jelölje

{
bn,i(u) : u ∈ [α, β]

}n
i=0

és
{
bn+1,i(u) :

u ∈ [α, β]
}n+1

i=0
.

A következő tétel a [Mazure és Laurent, 1998] 3.1. tételének kissé átalakított változata (ld. [Róth,
2017, 2.7. lemma]), melyben az [α, β] értelmezési tartomány mindkét végpontját figyelembe vettük an-
nak érdekében, hogy a megjelenő maximális deriválási rend a lehető legkisebb legyen (ez a hatékonyság
és numerikus stabilitás miatt is fontos).

1.7. Tétel (Általános rendszámnövelés). A fentebbi jelöléseket felhasználva, a cn n-edrendű B-görbére

14
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fennáll, hogy

cn(u) =
n∑
i=0

pibn,i(u) ≡
n+1∑
i=0

p1,ibn+1,i(u) =: cn+1(u), ∀u ∈ [α, β],

ahol p1,0 = p0, p1,n+1 = pn és

p1,i =

(
1−

b
(i)
n,i(α)

b
(i)
n+1,i(α)

)
pi−1 +

b
(i)
n,i(α)

b
(i)
n+1,i(α)

pi, i = 1, 2, ...,
⌊n
2

⌋
, (1.28)

p1,n+1−i =
b
(i)
n,n−i(β)

b
(i)
n+1,n+1−i(β)

pn−i +

(
1−

b
(i)
n,n−i(β)

b
(i)
n+1,n+1−i(β)

)
pn+1−i, i = 1, 2, ...,

⌊
n+ 1

2

⌋
. (1.29)

Bár az 1.7. tétel érvényes bármely olyan egymásba ágyazott 1 ∈ Sα,βn ⊂ Sα,βn+1 terek esetében,
melyekre a DSα,βn és DSα,βn+1 terek is KC-típusúak, az implementációban feltételezni fogjuk, hogy a ma-
gasabb rendű Sα,βn+1 tér is egy konstansegyütthatós lineáris homogén differenciálegyenlet megoldástere.
Természetesen az 1.7. tétel kijelentése kiterjeszthető az (1.20) típusú felületek rendszámnövelésére is,
amit az alkalmazással szintén elvégezhetünk.

(a) (b) (c)

1.5. ábra. Egy B-görbe és kontrollpoligonja rendszámnövelés előtt (a) és rendszámnövelés után (b). A
harmadik ábrát (c) az előző kettő egymásra tételéből kaptuk. A görbe mögötti vegyes

algebrai-exponenciális KC-teret meghatározó p4(z) = z3(z − 1) kiindulási karakterisztikus polinom
esetében a 0 gyök multiplicitását eggyel növeltük. Látható, hogy míg a kontrollpontok száma eggyel nő,

a görbe alakja változatlan marad.

1.5. B-görbék és B-felületek felosztási algoritmusa

A következőkben a B-görbék és B-felületek valamely, az értelmezési tartomány egyik belső pontjá-
nak megfelelő görbepont (illetve paramétergörbe) körüli felosztását szeretnénk megvalósítani. Ismertet-
jük a [Róth, 2017]-ben bemutatott módszert.

Minden normalizált B-bázisnak megfelel egy úgynevezett B-algoritmus az (1.19) típusú B-görbék
felosztására, azaz egy tetszőlegesen lerögzített γ ∈ (α, β) paraméterérték esetén létezik egy, a klasszikus
Bézier-görbék de Casteljau algoritmusához hasonló sorozatos saroklevágásokra épülő rekurzív felosztási
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eljárás, mely a p0
i (γ) = pi, i = 0, 1, ..., n kezdeti feltételekből indul és meghatározza a

pji (γ) =
[
1− ξji (γ)

]
· pj−1i (γ) + ξji (γ) · p

j−1
i+1 (γ), i = 0, 1, ..., n− j, j = 1, 2, ..., n (1.30)

felosztási pontokat, ahol a
{
ξji : [α, β] → [0, 1]

}n−j, n
i=0, j=1

keverőfüggvények explicit zárt alakja általá-
ban nem ismert, vagy speciális esetek (például Bézier-görbék) kivételével bonyolult nemlineáris alakot
öltenek, még kis dimenziószámú KC-terek esetén is.

Legyen Sα,βn egy KC-tér, úgy hogy 1 ∈ Sα,βn és β − α ∈ (0, l′n), továbbá legyenek Bα,γn :={
bn,i(u;α, γ) : u ∈ [α, γ]

}n
i=0

és Bγ,βn :=
{
bn,i(u; γ, β) : u ∈ [γ, β]

}n
i=0

a leszűkített Sα,γn :=

spanFα,γn := spanFα,βn

∣∣∣
[α,γ]

és Sγ,βn := spanFγ,βn := spanFα,βn

∣∣∣
[γ,β]

KC-terek NB-bázisai. Te-

kintsük a következő, (1.30)-as eljárásnak megfelelő háromszögséma átlós
{
λi(γ) := pi0(γ)

}n
i=0

és{
%i(γ) := pn−ii (γ)

}n
i=0

bejegyzéseit:

p0 =: λ0(γ)

p1 p1
0(γ) =: λ1(γ)

p2 p1
1(γ) p2

0(γ) =: λ2(γ)
...

...
... · · · pn0 (γ) =: λn(γ) =: %0(γ)

pn−2 p1
n−2(γ) p2

n−2(γ) =: %n−2(γ)

pn−1 p1
n−1(γ) =: %n−1(γ)

pn =: %n(γ)

Ezeket a pontokat konvex módon kombinálva a Bα,γn és Bγ,βn bázisok függvényeivel, a B-görbe a bal
és jobb oldali

ln(u) :=
n∑
i=0

λi(γ) · bn,i(u;α, γ) ≡ cn(u), ∀u ∈ [α, γ], (1.31)

illetve

rn(u) :=
n∑
i=0

%i(γ) · bn,i(u; γ, β) ≡ cn(u), ∀u ∈ [γ, β] (1.32)

ívre osztható, melyekre teljesül az is, hogy:

l(j)n (u) = c(j)n (u), ∀u ∈ [α, γ], (1.33)

r(j)n (u) = c(j)n (u), ∀u ∈ [γ, β], (1.34)

minden j ≥ 0 deriválási rendre.
A következőkben ismertetjük a [Róth, 2017]-ben bemutatott rekurzív eljárást, mellyel kiszámíthatók

a {λi(γ)}ni=0 és {%i(γ)}ni=0 osztópontok a
{
ξji : [α, β] → [0, 1]

}n−j, n
i=0, j=1

keverőfüggvények ismerete

nélkül is.
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1. FEJEZET: ELMÉLETI HÁTTÉR

1.8. Tétel (Általános B-algoritmus). Tetszőlegesen rögzített γ ∈ (α, β) paraméterérték és a

λ0(γ) = cn(α) = p0, (1.35)

λn(γ) = cn(γ) = %0(γ), (1.36)

%n(γ) = cn(β) = pn (1.37)

kezdeti feltételek esetén az ismeretlen {λi(γ)}ni=0 és {%i(γ)}ni=0 osztópontok meghatározhatók a követ-
kező rekurzív képletek segítségével:

λi(γ) =
1

b
(i)
n,i(α;α, γ)

c(i)n (α)−
i−1∑
j=0

λj(γ) · b(i)n,j(α;α, γ)

 , i = 1, ...,
⌊
n−1
2

⌋
, (1.38)

λn−i(γ) =
1

b
(i)
n,n−i(γ;α, γ)

c(i)n (γ)−
i−1∑
j=0

λn−j(γ) · b(i)n,n−j(γ;α, γ)

 , i = 1, ...,
⌊
n
2

⌋
, (1.39)

%i(γ) =
1

b
(i)
n,i(γ; γ, β)

c(i)n (γ)−
i−1∑
j=0

%j(γ) · b
(i)
n,j(γ; γ, β)

 , i = 1, ...,
⌊
n
2

⌋
, (1.40)

%n−i(γ) =
1

b
(i)
n,n−i(β; γ, β)

c(i)n (β)−
i−1∑
j=0

%n−j(γ) · b
(i)
n,n−j(β; γ, β)

 , i = 1, ...,
⌊
n−1
2

⌋
. (1.41)

Bizonyítás. Az ismeretlen {λi(γ)}ni=0 és {%i(γ)}ni=0 osztópontok kiszámítása visszavezethető az (1.33)-
as és az (1.34)-es azonosságok, illetve az (1.8) – (1.10)-es Hermite-féle végpontbeli feltételek együttes
alkalmazására, melyeket a Bα,βn , Bα,γn , illetve Bγ,βn bázisok egyaránt teljesítenek.

Például az (1.35)-ös kezdeti feltétel az (1.19)-es és az (1.31)-es B-görbék végpontbeli interpolációs
tulajdonságából adódik, mivel

cn(α) =

n∑
i=0

pi · bn,i(α;α, β) = p0 = λ0(γ) =

n∑
i=0

λi(γ) · bn,i(α;α, γ) = ln(α).

Ugyanakkor minden i = 1, 2, ...,
⌊
n−1
2

⌋
deriválási rendre fennáll a b(i)n,i(α;α, γ) > 0 egyenlőtlenség,

illetve hogy

c(i)n (α) = l(i)n (α)

=

n∑
j=0

λj(γ) · b(i)n,j(α;α, γ)

=

i∑
j=0

λj(γ) · b(i)n,j(α;α, γ)

=

i−1∑
j=0

λj(γ) · b(i)n,j(α;α, γ) + λi(γ) · b
(i)
n,i(α;α, γ),
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1. FEJEZET: ELMÉLETI HÁTTÉR

ahonnan következik az (1.38)-as képlet a λi(γ) osztópontra. A többi rekurzív összefüggés hasonlóan
igazolható. Vegyük észre, hogy ezek mindegyike igaz lenne bármely i ∈ 1, ..., n deriválási rendre. A
tétel kijelentésében szereplő leszűkítés célja csak az, hogy a kiértékelendő legmagasabb deriválási rend
a lehető legkisebb maradjon (a hatékonyság és stabilitás érdekében). �

(a) (b)

1.6. ábra. Az AT0,π
2

4 =
〈{

1, u, u2, sin(u), cos(u)
}〉

algebrai-trigonometrikus KC-tér fölött értelmezett
negyedrendű B-görbe felosztása a γ = π

6 paraméterértéknél. Az (a) ábrán az eredeti görbe és ennek
kontrollpoligonja látható, a (b) ábrán a felosztás utáni bal és jobb oldali ív, különböző színekkel.

1.6. Bázistranszformáció KC-terekben

Szeretnénk felépíteni azt a bázistranszformációt, amely az Sα,βn KC-tér Bα,βn normalizált B-bázisát
annak Fα,βn hagyományos bázisára képezi le (ahol β − α ∈ (0, l′n)):[

ϕn,i(u)
]n
i=0

=
[
tni,j

]n, n
i=0, j=0

·
[
bn,i(u)

]n
i=0

, ∀u ∈ [α, β]. (1.42)

A következő tétel egy hatékony módszert ad az ismeretlen [tni,j ]
n, n
i=0, j=0 értékek kiszámítására.

1.9. Tétel (Hatékony bázistranszformáció, [Róth, 2017, 2.11. tétel]). Az előbbi jelöléseket használva
az (1.42) bázistranszformáció [tni,j ]

n, n
i=0, j=0 mátrixának elemei meghatározhatók az alábbi rekurzív össze-

függésekkel:

tni,j =
1

b
(j)
n,j(α)

[
ϕ
(j)
n,i(α)−

j−1∑
k=0

tni,kb
(j)
n,k(α)

]
, j = 1, 2, ...,

⌊n
2

⌋
, (1.43)

illetve

tni,n−j =
1

b
(j)
n,n−j(β)

[
ϕ
(j)
n,i −

j−1∑
k=0

tni,n−kb
(j)
n,n−k(β)

]
, j = 1, 2, ...,

⌊
n− 1

2

⌋
, (1.44)

ahol a kezdőelemek
{
tn0,j = 1

}n
j=0

,
{
tni,0 = ϕn,i(α)

}n
i=1

és
{
tni,n = ϕn,i(β)

}n
i=1

.
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1. FEJEZET: ELMÉLETI HÁTTÉR

Bizonyítás. Az (1.43)-as és az (1.44)-es összefüggések helyessége belátható, ha a

ϕn,i(u) =

n∑
k=0

tni,kbn,k(u), ∀u ∈ [α, β] , i = 1, ..., n

függvényegyenlőségeket rendre j = 1, ...,
⌊
n
2

⌋
-edrendben deriváljuk, majd az u = α, illetve u = β

paraméterértékeknél alkalmazzuk az (1.8) – (1.10)-es végpontbeli feltételek valamelyikét. Például u = α

esetében írhatjuk, hogy

ϕ
(j)
n,i(α) =

n∑
k=0

tni,kb
(j)
n,k(α)

(1.8)
==

j∑
k=0

tni,kb
(j)
n,k(α) =

j−1∑
k=0

tni,kb
(j)
n,k(α) + tni,jb

(j)
n,j(α),

ahol b(j)n,j(α) > 0. Tehát a tni,j elemek megkaphatók a megfelelő kivonás és osztás elvégzésével. �

Ha a bázistranszformációs mátrix rendelkezésünkre áll, a hagyományos bázis függvényében paramé-
teres alakban megadott görbék és felületek egzakt leírására is lehetőség nyílik.

1.10. Tétel (Görbék egzakt leírása, [Róth, 2015]). Az (1.19) típusú B-görbéket felhasználva, a

c(u) =
n∑
i=0

λiϕn,i(u), u ∈ [α, β], λi ∈ Rδ, δ ≥ 2 (1.45)

hagyományos paraméteres alakban megadott görbére teljesül, hogy

c(u) ≡ cn(u) =

n∑
j=0

pjbn,j(u), ∀u ∈ [α, β],

ahol [
p0 p1 · · · pn

]
=
[
λ0 λ1 · · · λn

]
·
[
tni,j

]n, n
i=0, j=0

. (1.46)

1.11. Tétel (Felületek egzakt leírása – az előző tétel kiterjesztése [Róth, 2017]). Legyen

Fαr,βrnr =
{
ϕnr,ir(ur) : ur ∈ [αr, βr]

}nr
ir=0

, ϕnr,0 ≡ 1

a hagyományos, illetve
Bαr,βrnr =

{
bnr,jr(ur) : ur ∈ [αr, βr]

}nr
jr=0

az egyedi normalizált B-bázisa az Sαr,βrnr KC-tereknek (r = 0, 1), valamint jelölje
[
tnrir,jr

]nr, nr
ir=0, jr=0

azt a

reguláris négyzetes mátrixot, mely a Bαr,βrnr -t Fαr,βrnr -be alakítja. Tekintsük továbbá az

s(u0, u1) =
[
s0(u0, u1) s1(u0, u1) s2(u0, u1)

]T
∈ R3, (u0, u1) ∈ [α0, β0]× [α1, β1] (1.47)
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1. FEJEZET: ELMÉLETI HÁTTÉR

felületet, ahol

sl(u0, u1) =

σl−1∑
ζ=0

1∏
r=0

(
nr∑
ir=0

λl,ζnr,irϕnr,ir(ur)

)
, σl ≥ 1, l = 0, 1, 2.

Ekkor (1.20) típusú B-felületeket felhasználva az (1.47)-es felületre teljesül, hogy

s(u0, u1) ≡ sn0,n1(u0, u1) =

n0∑
j0=0

n1∑
j1=0

pj0,j1bn0,j0(u0) bn1,j1(u1), ∀(u0, u1) ∈ [α0, β0]× [α1, β1],

ahol a pj0,j1 =
[
plj0,j1

]2
l=0
∈ R3 pontokat meghatározó koordináták

plj0,j1 =

σl−1∑
ζ=0

1∏
r=0

(
nr∑
ir=0

λl,ζnr,ir t
nr
ir,jr

)
, l = 0, 1, 2. (1.48)

Az (1.19) és (1.20) típusú B-görbéket és B-felületeket felhasználva az (1.46) – (1.48)-as képletek
felhasználásával a bemutatott bázistranszformáció felhasználható olyan hagyományos paraméteres alak-
ban megadott görbék és felületek egy nagy családjának egzakt leírására, melyek fontosak lehetnek az
alkalmazott matematika számos terültén. A bemutatott módszereken keresztül az alkalmazással kezel-
hető KC-terek magukba foglalnak olyan függvényeket, melyek gyakran használt geometriai objektu-
mok leírását is lehetővé teszik, mint például ellipszisek, epi- és hipocikloidok, epi- és hipotrochoidok,
Lissajous-görbék, tórusz csomók, rózsa-görbék, hiperbolák, ellipszoidok, archimédeszi és logaritmikus
spirálok stb. Az 1.7. ábra egy tórusz B-felületi foltokból felépített egzakt előállítását tartalmazza.
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1. FEJEZET: ELMÉLETI HÁTTÉR

1.7. ábra. Egy tórusz egzakt leírása és megjelenítése B-felületdarabokkal (az egyik felületdarab
kontrollhálója kékkel kiemelve). A megjelenítés és a kontrollpontok helyének kiszámítása a bemutatott

alkalmazás segítségével történt.
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2. fejezet

Implementációs részletek
Összefoglaló: Bemutatjuk az alkalmazás felhasználói felületét, ismertetjük a felhasznált
keretrendszert és könyvtárakat, illetve bemutatjuk az 1. fejezetben tárgyalt módszerek imp-
lementációjának szerkezetét.

2.1. Az felhasználói felület felépítése

Az alkalmazás indításakor megjelenő fő képernyőn egy üres színtér és egy jobboldalon elhelyezkedő
eszköztár fogadja a felhasználót. Az eszköztáron a megjelenítési paraméterek beállítása mellett lehetőség
nyílik új görbék vagy felületek hozzáadására, mentésére, törlésére, illetve már meglévők (vagy egy teljes
gyűjtemény) betöltésére.

2.1. ábra. Fő képernyő, rajta egy felületi folt és a kontrollhálója
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2. FEJEZET: IMPLEMENTÁCIÓS RÉSZLETEK

Az eszköztár négy füllel rendelkezik, ezek közül mindig azok aktívak, amelyeket a színtéren kijelölt
elem meghatároz. Ha nincs semmi kijelölve, akkor csak a Nézet (View) fül aktív, ha egy felületdarab van
kijelölve, akkor a Felület (Surface) is aktív lesz (ld. 2.1. ábra), ha egy görbét jelölünk ki, akkor a Felület
helyett a Görbe (Curve) fül lesz aktív. Ha a görbének (felületnek) egy kontrollpontja a kijelölt elem,
akkor pedig a Pont (Point) fül is aktív lesz az előbb említettek mellett. A következőkben bemutatjuk az
eszköztár nyújtotta beállítási lehetőségeket.

2.1.1. A Nézet (View) fül

2.2. ábra. Nézet (View) fül

A 2.2. ábrán látható Nézet fül a globális beállításo-
kat tartalmazza, ezért nem válik inaktívvá még akkor
sem, ha semmi sincs kijelölve.

A tetején található két gomb elősegíti a kamerané-
zet eredetire való visszaállítását, illetve olyan eltolását,
melynek következtében az aktuálisan kijelölt elem kö-
zépre kerül. Ezek alatt beállíthatjuk a vonalak általá-
nos vastagságát, illetve a kijelölt elemhez rendelt vo-
nalvastagságot, melyet célszerű az előzőnél valamivel
nagyobb beállításon hagyni, hogy a kijelöltség érzetét
keltse. Beállíthatjuk még az osztópont-számokat egy-
egy görbe és felületi folt megjelenítéséhez (ti. két osztó-
pontot egyenes szakasz köt össze, a görbe vagy felület
csak az egyes osztópontokban van kiértékelve). Beál-
líthatjuk a kontrollpoligonok és -hálók színét, illetve a
teljes megjelenítési vászon háttérszínét is.

A fül alsó részén található gombok új elemek lét-
rehozását, ezek fájlból való betöltését teszik lehetővé
illetve lehetőségünk van a teljes konfiguráció lemen-
tésére vagy fájlból való betöltésére is. Az alkalmazás
minden ki- és bemeneti állománya szöveges, az általa
reprezentált grafikus vagy matematikai elem konfigurá-
ciójához szükséges együtthatókat és koordinátákat tar-
talmazza a megfelelő sorrendben, fehér karakterekkel
elválasztva (a felhasználónak nem szükséges ismerni az
egyes fájlok szerkezetét, viszont elnevezési konvenció-
val – például kiterjesztés megadásával – jelölheti, hogy
melyik kimentett fájl mit tartalmaz).
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2. FEJEZET: IMPLEMENTÁCIÓS RÉSZLETEK

2.1.2. A Görbe (Curve) fül

2.3. ábra. Görbe (Curve) fül

A Görbe fül a 2.3. ábrán látható. Olyan beállítá-
sokat tartalmaz, amelyek az aktuálisan kijelölt görbére
vonatkoznak (és a színtér többi elemét nem befolyásol-
ják). Ha az aktuális elem nem egy görbe (illetve nem
egy görbének kontrollpontja), akkor ez a fül inaktív,
ami egyben az is jelenti, hogy ha előzőleg ki volt je-
lölve, akkor az eszköztár visszaugrik a Nézet fülre.

Az első gombra kattintva azon KC-teret tudjuk be-
állítani (ld. 2.1.5. pont), amely fölött a görbe értelme-
zett, a második gomb pedig az egzakt leíráshoz szük-
séges paraméteres alak beállítására szolgál (ld. 2.1.6.
pont).

Jelölőnégyzetek segítségével beállíthatjuk, hogy
mindig látható legyen-e a kontrollpoligon (nem csak
amikor a görbe ki van jelölve), illetve hogy szeretnénk-
e megjeleníteni a görbe egyes osztópontjaihoz tartozó
első- és másodrendű deriváltakat. A görbének és de-
riváltjainak színét is külön-külön beállíthatjuk az ezek
alatt elhelyezkedő három nyomógomb segítségével.

Ezeket követi egy elemcsoport, mely a rendszám-
növelés megvalósítását teszi lehetővé. Ennek érdeké-
ben a KC-teret definiáló karakterisztikus polinomot
úgy kell megváltoztatni, hogy a gyökeinek száma leg-
alább egyel nőjön. Ezt teszi lehetővé a három bemeneti
mező. Ha olyan gyököt állítunk be, amely már gyöke
volt a karakterisztikus polinomnak, akkor annak mul-
tiplicitása a megfelelő értékkel nő. Ha a beállított gyök
nem valós, akkor a konjugáltja is gyök lesz (ugyan-
olyan multiplicitással). A Mehet! (Go!) gomb megnyo-
másakor végrehajtódik a rendszámnövelés (a kontroll-
pontok száma a megadott multiplicitással – illetve nem
valós gyök esetén annak kétszeresével – nő).

A következő elemcsoport a felosztást teszi lehetővé. Beállíthatjuk, hogy az aktuális értelmezési tar-
tományt mely paraméterértéknél szeretnénk felosztani.

Végül egy-egy gomb segítségével ki lehet törölni a kijelölt görbét a színtérről, illetve le lehet azt
menteni egy fájlba. A fájlból való betöltésre a Nézet fül ad csak lehetőséget, hiszen ez a művelet nem
kapcsolódik az aktuálisan kijelölt elemhez.
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2.1.3. A Felület (Surface) fül

2.4. ábra. Felület (Surface) fül

Mint az a 2.4. ábrán látható, a Felület fül szintén
a KC-terek illetve az egzakt leírás beállítására szolgáló
gombokkal kezdődik. Itt akár különböző KC-tereket is
beállíthatunk az egyes (u és v) paraméterirányoknak.

A gombokat követő három jelölőnégyzettel beál-
líthatjuk a kontrollháló állandó láthatóságát (hason-
lóan az előbbiekben a kontrollpoligonhoz), azt, hogy
szeretnénk-e látni a felületpontokhoz tartozó normál-
vektorokat, illetve, hogy szeretnénk-e a felületen izo-
parametrikus vonalakat megjeleníteni.

A következő legördülő listából néhány előre be-
állított anyagi jellemző közül választhatunk (melyek
meghatározzák a felület színét és fényvisszaverő tulaj-
donságait), majd beállíthatjuk a normálvektorok és izo-
parametrikus vonalak színét.

A rendszámnövelésre szolgáló elemcsoport a gör-
békhez hasonló, viszont két gomb áll a rendelkezésünk-
re, mivel rendszámnövelést a felületek esetében kü-
lön az u vagy v paraméterirányban tudunk elvégezni.
Mindkét esetben csak a paraméteriránynak megfelelő
KC-tér kerül módosításra, valamint nő a kontrollháló
sorainak vagy oszlopainak száma.

Következik két elemcsoport, az u- illetve v-irányú
felosztás megvalósítására. Mindkét esetben a megfele-
lő KC-tér értelmezési tartományából választhatunk ki
egy-egy belső pontot, melynek megfelelő (u- vagy v-
irányú) paramétergörbe mentén történik majd a felület
felosztása.

Végül egy-egy gomb ad lehetőséget a felületdarab
törlésére illetve állományba mentésére.

2.1.4. A Pont (Point) fül

Bár a kontrollpontok egérrel mozgathatók, előfor-
dulhat, hogy a felhasználó konkrét koordinátaértékre szeretné helyezni ezeket. Egy kijelölt kontrollpont
koordinátáinak megtekintésére és megváltoztatására ad lehetőséget a 2.5. ábrán látható Pont fül.

Mint minden eddigi beállítás esetében, a színtér élőben módosul jelen esetben is, ha az X , Y , Z
koordinátákhoz társított értékeket megváltoztatjuk.

25



2. FEJEZET: IMPLEMENTÁCIÓS RÉSZLETEK

2.5. ábra. Pont (Point) fül

2.1.5. KC-terek konfigurálására szolgáló dialógusablak

Amint azt az elméleti részben említettük, egy KC-teret az (1.12) alakú karakterisztikus polinom
gyökeinek megadásával határozunk meg az alkalmazásban. Erre nyújt lehetőséget a 2.6. ábrán látható
dialógusablak.

2.6. ábra. KC-tér definiálására szolgáló dialógusablak

Beállíthatjuk a tér függvényeinek közös értelmezési tartományát, majd hozzáadhatunk, kitörölhetünk
és megváltoztathatunk gyököket, illetve ezek multiplicitásait. A komplex gyökpárok közül csak az egyi-
ket kell megadni (vagyis az imaginárius résznek csak az abszolút értékét), hiszen a másik ugyanolyan
multiplicitással feltétlenül gyök kell legyen, mert a karakterisztikus polinom valós együtthatós.
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Ha deformált intervallumot adunk meg, hibaüzenetet kapunk (ld. 2.7. ábra). Hasonlóan abban az
esetben is, ha egy gyököt kétszer adunk meg (ld. 2.8. ábra), ugyanis ilyenkor az előző gyök multiplicitását
kellene növelni.

2.7. ábra. Hibás intervallum esetén mutatott hibaüzenet

2.8. ábra. Ismétlődő gyök esetén mutatott hibaüzenet

Az alul található gombok segítségével betölthetünk egy KC-tér konfigurációt egy memóriában talál-
ható pufferből vagy fájlból (Load Existing Setup), illetve lementhetjük azt a memóriában tárolt pufferbe
vagy fájlba (Save For Later Use). Lehetőség van az ablak megnyitásakor látott eredeti állapot visszaállí-
tására (Undo Changes), a változtatások mentésére (Save) és az ablak bezárására mentés nélkül (Cancel).

A dialógusablak rendelkezik egy, a 2.9. ábrán látható másik füllel is, mely az előbbiekben definiált
KC-tér keverőfüggvényeinek előnézetét mutatja. Ez azért is fontos, mert a keverőfüggvények alakját lát-
va meggyőződhetünk arról, hogy nem ütköztünk stabilitási problémába, illetve hogy az általunk megadott
intervallumon tényleg KC-teret generálnak-e a gyökök által meghatározott bázisfüggvények.

Ez utóbbi ugyanis nem akármilyen intervallumra igaz és az ennek előzetes meghatározására ismert
módszer (ld. (1.18)-ban a kritikus hossz vizsgálatát) néha túl nagy elővigyázatosságot eredményez (az-
az nagyobb intervallumot is gond nélkül használhatna a felhasználó). Ennek elkerülése érdekében az
intervallum megfelelőségének (grafikus) ellenőrzését itt a felhasználóra bízzuk.

A bázisfüggvények alakján kívül látható még az aktuális értelmezési tartomány, a gyökök által meg-
határozott differenciálegyenlet, illetve a hagyományos bázist felépítő függvények zárt alakja. A megje-
lenítési vászon háttérszíne szintén állítható (alapértelmezetten fekete).

A felhasználónak javasolt munkamenet tehát az, hogy miután a tér paramétereinek beállítása meg-
történt, mentés előtt térjen át erre a fülre az új keverőfüggvények ellenőrzése céljából. Így elkerülhető,
hogy mentés után a görbe (vagy felület) alakja az instabilitás miatt (vagy a nem megfelelő értelmezési
tartomány miatt) elromoljon.
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2.9. ábra. KC-tér keverőfüggvényeinek nézete

2.1.6. Egzakt leírás beállítására szolgáló dialógusablak

Az egzakt leírás megvalósításához lehetőséget kell adjunk a felhasználónak arra, hogy a hagyomá-
nyos bázisoktól függő paraméteres alakot megadhassa. Erre szolgál a 2.10. ábrán látható dialógusablak.

Görbék esetén a hagyományos bázisfüggvények jelennek meg az oszlopokban, felületek esetén pedig
az u- és v-irányú terek hagyományos bázisfüggvényeiből álló szorzatpárok. A felhasználó nem nulla
együtthatók beállítása által tudja bevinni a rendszerbe a leírni kívánt görbe vagy felületdarab explicit
paraméteres alakját.

A 2.10. ábrán például az 1.7. ábrán szereplő tórusz paraméteres alakjának megfelelően állítottuk
be az együtthatókat. Mivel az oszlopok száma a terek dimenziószámának szorzata, ezeket nem mindig
tudjuk egyszerre megjeleníteni, ezért egy görgetősávot használunk.

Az Frissítés (Update) gomb lenyomásakor a kijelölt görbe vagy felületi folt kontrollpontjainak helye
az (1.42)-es bázistranszformáció, illetve az (1.46)-os és (1.48)-as képletek alapján megváltozik, így a
paraméteres leírásnak megfelelő alakot kapjuk (az aktuális értelmezési tartományra leszűkítve, például
az 1.7. ábrán látható tóruszt több folt együtteséből tudjuk csak előállítani).

Lehetőség van még az aktuális együttható-beállítás fájlba mentésére, illetve onnan történő betöltésé-
re, valamint az ablak bezárására anélkül, hogy a kontrollpontok helyét módosítanánk.
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2.10. ábra. Egzakt leírás beállítása

2.1.7. Egérműveletek a színtéren

Az implementált egérműveletek egyrészt a kameranézet állítását, másrészt pedig objektumok kijelö-
lését (majd ezek elmozgatását) teszik lehetővé.

Az egérkurzor típusa annak függvényében változik, hogy az alatta lévő területen éppen milyen ob-
jektum található:

– az alapértelmezett kurzor (2.11a ábra) akkor látható, amikor alatta nem található objektum, ilyen-
kor kattintás hatására nem történik kijelölés, viszont tudjuk a kameranézetet mozgatni (bal egér-
gombot letartva), a nézet Ox és Oy tengelyei körül forgatni (jobb egérgombot letartva), illetve
nagyítani vagy kicsinyíteni (görgetéssel);

– a megjelölő kurzor (2.11b ábra) akkor látható, ha az egérmutató alatt egy még nem kijelölt görbe
vagy felületdarab található, bal kattintással ilyenkor kijelölhetjük az adott elemet;

– a pontmegjelölő kurzor (2.11c ábra) olyankor jelenik meg, ha a kijelölt görbe vagy felületdarab
kontrollpoligonjának egyik csúcspontja van a közelben, ilyenkor bal egérgombbal kijelölhetjük az
adott kontrollpontot;

– a mozgató kurzor (2.11d ábra) azt jelzi, hogy az egér alatt az aktuálisan kijelölt elem található,
ilyenkor a bal egérgombot letartva tudjuk mozgatni a kijelölt elemet, a jobb egérgombot letartva
tudjuk forgatni (a nézet Ox és Oy tengelyei körül), illetve a [Ctrl] billentyűt letartva a görgővel
tudjuk nagyítani vagy kicsinyíteni.
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(a) Alapértelmezett kurzor (b) Megjelölő kurzor (c) Pontmegjelölő kurzor (d) Mozgató kurzor

2.11. ábra. Kurzortípusok

2.2. A forráskód szerkezete

A programkód C++ nyelvben (ld. [Stroustrup, 2013]) íródott objektumorientált szemléletben, a fel-
használt külső függőségek pedig:

– a Qt 5 keretrendszer1: a grafikus felhasználói felület alapelemeit, illetve az ezekhez tartozó (signal
– slot) típusú eseménykezelést biztosítja, továbbá rendelkezésünkre bocsát olyan dialógusablako-
kat, melyekkel a (ki- és bemeneti) fájlok, illetve a felhasználni kívánt színek kiválaszthatóak (ld.
2.12. ábra). Mindezen elemek megjelenítéséhez a keretrendszer Widgets alrészét használtuk. Az
elkészített alkalmazást így bizonyos platformok között hordozhatóvá tehetjük (jelen esetben egy
Linux disztribúción X11 alatt, illetve MS Windows 10 operációs rendszeren teszteltük az alkalma-
zást, csak a fordítás konfigurációja platformfüggő);

(a) Fájlválasztó ablak (QFileDialog) (b) Színválasztó ablak (QColorDialog)

2.12. ábra. Qt Widgets dialógusablakok

– az OpenGL könyvtár: az alacsonyszintű grafikus elemek (pont, szakasz, háromszög) megjeleníté-
sét, színek, anyagi jellemzők és árnyalók beállítását, illetve a színtér kialakítását (nézet beállítása,

1. https://doc.qt.io/qt-5/ (megtekintve 2018. június 20.)
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megvilágítás) teszi lehetővé (részletes leírásért ld. [Kessenich et al., 2016]). Felhasználtuk továbbá
a GLU2 (OpenGL Utility Library) és GLEW3 (OpenGL Extension Wrangler) segédkönyvtárakat.

– az OpenMP4 (Open Multi-Processing) programozási interfész: az egyes számítások párhuzamo-
sítására használtuk általában olyan esetekben, amikor ezek csak különböző memóriacímekre ír-
nak. Ilyenkor a kölcsönös kizárás megvalósítása nem volt szükséges, és egyszerű #pragma omp

parallel for típusú konstrukciókat tudtunk használni.

2.13. ábra. Forrásfájlok elrendezése

A forráskód megírásához, a felhasználói fe-
lület komponenseinek grafikus szerkesztéséhez, a
fordításhoz, illetve a tesztek futtatásához a Qt
Creator nevű integrált fejlesztői környezetet hasz-
náltuk. A forráskód elrendezését a 2.13. ábra
szemlélteti, mely a Qt Creator felhasználói felü-
letén megjelenő hierarchia.

A Core mappa tartalmazza azon alapvető ma-
tematikai konstrukcióknak megfelelő osztályokat,
melyeket az alkalmazás többi része ismételten fel-
használ, ilyenek például a térbeli Descartes-féle
és homogén koordináták (DCoordinate3, HCo-
ordinate3), illetve mátrixok és mátrixfelbontások
(Matrix, RowMatrix, ColumnMatrix, Triangular-
Matrix, RealMatrix, PLUDecomposition, Facto-
rizedUnpivotedLUDecomposition). Szintén itt ta-
lálhatóak meg az OpenGL-lel megjeleníthető gör-
bét és felületet reprezentáló osztályok (Generic-
Curve3, TriangulatedMesh3), illetve azok is, ame-
lyek ezeket kontrollpontok és keverőfüggvények
(nullad- és magasabb rendű deriváltjai) alapján
elő tudják állítani az (1.1)-es és (1.2)-es alak-
nak megfelelően (LinearCombination3, Tensor-
ProductSurface3). Végül néhány, a grafikus meg-
jelenítést elősegítő osztály is megtalálható eb-
ben a katalógusban: fények (DirectionalLight,
PointLight, SpotLight), árnyaló (ShaderProgram),
anyagi jellemzők (Material).

Az EC mappa tartalmazza az 1. fejezetben be-
mutatott elméleti eredmények implementációját. Az itt található osztályok kódja újrahasznosítható, nem

2. https://www.khronos.org/registry/OpenGL/specs/gl/glu1.3.pdf (megtekintve 2018. június 19.)
3. http://glew.sourceforge.net/ (megtekintve 2018. június 19.)
4. https://www.openmp.org/ (megtekintve 2018. június 20.)
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függ sem a felhasználói felületünktől, sem a Qt keretrendszerben definiált más osztályoktól és függvé-
nyektől.

Az KC-terek kezeléséért és a bázisfüggvények kiértékeléséért felelős osztályok a 2.14. ábrán látha-
tók. A CharacteristicPolynomial osztály egy (1.11) alakú differenciálegyenlet karakterisztikus polinom-
ját ábrázolja, az OrdinaryBasisFunction pedig az egyenlet megoldásterének egyik hagyományos bázis-
függvényét tudja tárolni, valamint kiértékelni ennek (nullad- és magasabb rendű) deriváltjait a Leibniz-
szabály segítségével.

2.14. ábra. A KC-terek kezeléséért felelős osztályok

Az ECSpace osztály ábrázol egy kiterjesztett Csebisev-teret (neve az angol Extended Chebyshev
megnevezésből adódik), fejállományának tartalmát láthatjuk a 2.1. kódrészletben.

2.1. Kódrészlet. Az ECSpace.h fejállomány

1 namespace cagd
2 {
3 c l a s s ECSpace
4 {
5 p u b l i c :
6 s t d : : p a i r < double , double > d e f i n i t i o n D o m a i n ;
7 C h a r a c t e r i s t i c P o l y n o m i a l c h a r a c t e r i s t i c P o l y n o m i a l ;
8

9 ECSpace ( ) ;
10 ECSpace ( c o n s t ECSpace &ecSpace ) ;
11 c o n s t ECSpace &o p e r a t o r =( c o n s t ECSpace &r i g h t S i d e ) ;
12

13 / / P r e p r o c e s s i n g i s needed when t h e d e f i n i t i o n D o m a i n
14 / / o r t h e c h a r a c t e r i s t i c P o l y n o m i a l changes :
15 vo id p r e p r o c e s s i n g ( ) ;
16

17 s t d : : v e c t o r < O r d i n a r y B a s i s F u n c t i o n > o r d B a s e s ;
18 u n s i g n e d ge tDimens ion ( ) c o n s t ;
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19

20 do ub l e NNBBaseDer iva t ive (
21 u n s i g n e d index , u n s i g n e d d e r i v _ o r d e r , dou b l e i n p u t ) c o n s t ;
22

23 ECSpace ∗getAugmentedECSpace (
24 C h a r a c t e r i s t i c P o l y n o m i a l : : Zero zeroToAdd ) c o n s t ;
25

26 R e a l M a t r i x g e t B a s i s T r a n s f o r m a t i o n M a t r i x ( ) c o n s t ;
27

28 p r i v a t e :
29 u n s i g n e d _d imens ion ;
30 boo l _ i s R e f l e c t i o n I n v a r i a n t ;
31 R e a l M a t r i x _rho ;
32 R e a l M a t r i x _mu ;
33 s t d : : v e c t o r < double > _lambda ;
34

35 vo id s e t u p O r d B a s e s ( ) ;
36 vo id c a l c u l a t e R h o ( ) ;
37 vo id calculateMuAndLambda ( ) ;
38 } ;
39

40 s t d : : o s t r e a m &o p e r a t o r < <( s t d : : o s t r e a m &st ream , c o n s t ECSpace &s p a c e ) ;
41 s t d : : i s t r e a m &o p e r a t o r > >( s t d : : i s t r e a m &st ream , ECSpace &s p a c e ) ;
42 }

Az értelmezési tartomány és a karakterisztikus polinom kívülről szabadon állíthatóak, az
NB-bázisfüggvények kiértékelése előtt viszont meg kell hívni a 15. soron látható előfeldolgozó
preprocessing() függvényt, mely előkészíti a kiértékeléshez szükséges (ρi,j , µi,j , λi,j) együttha-
tókat az 1.3. szakasznak megfelelően. A 23. soron található getAugmentedECSpace(...) függ-
vény a nagyobb dimenziószámú, adott új gyököt tartalmazó KC-teret téríti vissza. Bázistranszfor-
mációs mátrixot is generálhatunk az 1.6. szakaszban leírtaknak megfelelően a 26. soron megjelenő
getBasisTransformationMatrix() függvény segítségével.

A BCurve3 és BSurface3 osztályok B-görbéket és B-felületeket tárolnak és a Core mappában talál-
ható LinearCombination3 illetve TensorProductSurface3 osztályokat terjesztik ki (lásd 2.15. ábra), de-
finiálva a keverőfüggvények kiértékelésére vonatkozó tiszta virtuális tagfüggvényeket. Mindkét osztály
tartalmazza a felhasznált KC-teret (-tereket), illetve a rendszámnöveléshez, felosztáshoz és egzakt le-
írás konfigurálásához szükséges metódusokat, melyek implementációi az 1.4., 1.5. és 1.6. szakaszokban
leírtakat követik. A 2.2. és 2.4. kódrészletek a BCurve3 illetve BSurface3 osztályokhoz tartozó fejállo-
mányok.

2.2. Kódrészlet. A BCurve3.h fejállomány

1 # pragma once
2

3 # i n c l u d e " . . / Core / L i n e a r C o m b i n a t i o n 3 . h "
4 # i n c l u d e " ECSpace . h "
5

6 namespace cagd
7 {
8 c l a s s BCurve3 : p u b l i c L i n e a r C o m b i n a t i o n 3
9 {

10 p r i v a t e :
11 c o n s t ECSpace∗ _ecSpace ;
12

13 p u b l i c :
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2.15. ábra. A BCurve3 és BSurface3 osztályok kapcsolatai

14 BCurve3 ( c o n s t ECSpace∗ ecSpace ) ;
15

16 v i r t u a l GLboolean B l e n d i n g F u n c t i o n V a l u e s (
17 GLdouble u , RowMatrix <GLdouble>& v a l u e s ) c o n s t ;
18 v i r t u a l GLboolean C a l c u l a t e D e r i v a t i v e s (
19 GLuint m a x _ o r d e r _ o f _ d e r i v a t i v e s ,
20 GLdouble u ,
21 D e r i v a t i v e s& d ) c o n s t ;
22

23 s t d : : p a i r <ECSpace ∗ , BCurve3∗> p e r f o r m O r d e r E l e v a t i o n (
24 do ub l e reZero , d oub l e imZero , i n t m u l t i p l i c i t y ) c o n s t ;
25 boo l c a l c u l a t e D a t a F o r O r d e r E l e v a t e d C u r v e (
26 ECSpace ∗newECSpace , BCurve3 ∗newCurve ) c o n s t ;
27

28 s t r u c t S u b d i v i s i o n R e s u l t {
29 ECSpace ∗ e c S p a c e L e f t ;
30 BCurve3 ∗ b C u r v e L e f t ;
31 ECSpace ∗ e c S p a c e R i g h t ;
32 BCurve3 ∗ bCurveRigh t ;
33 } ;
34 S u b d i v i s i o n R e s u l t p e r f o r m S u b d i v i s i o n ( d ou b l e gamma ) c o n s t ;
35 vo id f i l l S u b d i v i s i o n V a l u e s (
36 S u b d i v i s i o n R e s u l t &r e s u l t ,
37 do ub l e a lpha ,
38 do ub l e gamma ,
39 do ub l e b e t a ) c o n s t ;
40

41 vo id u p d a t e C o n t r o l P o i n t s F o r E x a c t D e s c r i p t i o n (
42 c o n s t s t d : : v e c t o r < DCoordina te3 > &c o e f f i c i e n t s ) ;
43 } ;
44 }

2.3. Kódrészlet. A BSurface3.h fejállomány

1 # pragma once
2 # i n c l u d e " ECSpace . h "
3 # i n c l u d e " . . / Core / T e n s o r P r o d u c t S u r f a c e s 3 . h "
4 # i n c l u d e <unordered_map >
5

6 namespace cagd
7 {
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8 c l a s s BSur face3 : p u b l i c T e n s o r P r o d u c t S u r f a c e 3
9 {

10 p r i v a t e :
11 c o n s t ECSpace ∗_ecSpaceU ;
12 c o n s t ECSpace ∗_ecSpaceV ;
13

14 u n s i g n e d _ c a c h e _ u _ c o u n t ;
15 u n s i g n e d _ c a c h e _ v _ c o u n t ;
16 s t d : : unordered_map < uns igned , double > _ u _ d e r i v a t i v e _ c a c h e ;
17 s t d : : unordered_map < uns igned , double > _ v _ d e r i v a t i v e _ c a c h e ;
18

19 u n s i g n e d getKey ( u n s i g n e d index , u n s i g n e d o r d e r , u n s i g n e d kno t ) ;
20 do ub l e getNNBDerivat iveU ( u n s i g n e d index , u n s i g n e d o r d e r , d ou b l e u ) ;
21 do ub l e getNNBDerivat iveV ( u n s i g n e d index , u n s i g n e d o r d e r , d ou b l e v ) ;
22

23 p u b l i c :
24 BSur face3 ( c o n s t ECSpace ∗ecSpaceU , c o n s t ECSpace ∗ecSpaceV ) ;
25

26 GLboolean U B l e n d i n g F u n c t i o n V a l u e s (
27 GLdouble u_knot ,
28 RowMatrix <GLdouble > &b l e n d i n g _ v a l u e s ) ;
29 GLboolean V B l e n d i n g F u n c t i o n V a l u e s (
30 GLdouble v_knot ,
31 RowMatrix <GLdouble > &b l e n d i n g _ v a l u e s ) ;
32

33 GLboolean C a l c u l a t e P a r t i a l D e r i v a t i v e s (
34 GLuint m a x i m u m _ o r d e r _ o f _ p a r t i a l _ d e r i v a t i v e s ,
35 GLdouble u , GLdouble v ,
36 P a r t i a l D e r i v a t i v e s &pd ) ;
37

38 s t d : : p a i r <ECSpace ∗ , BSur face3 ∗> p e r f o r m U O r d e r E l e v a t i o n (
39 do ub l e reZero , d oub l e imZero , i n t m u l t i p l i c i t y ) c o n s t ;
40 s t d : : p a i r <ECSpace ∗ , BSur face3 ∗> p e r f o r m V O r d e r E l e v a t i o n (
41 do ub l e reZero , d oub l e imZero , i n t m u l t i p l i c i t y ) c o n s t ;
42

43 s t r u c t S u b d i v i s i o n R e s u l t {
44 ECSpace ∗ e c S p a c e L e f t ;
45 BSur face3 ∗ b S u r f a c e L e f t ;
46 ECSpace ∗ e c S p a c e R i g h t ;
47 BSur face3 ∗ b S u r f a c e R i g h t ;
48 } ;
49 S u b d i v i s i o n R e s u l t p e r f o r m U S u b d i v i s i o n ( dou b l e gamma ) c o n s t ;
50 S u b d i v i s i o n R e s u l t p e r f o r m V S u b d i v i s i o n ( dou b l e gamma ) c o n s t ;
51

52 c o n s t ECSpace ∗getECSpaceU ( ) c o n s t { r e t u r n _ecSpaceU ; }
53 c o n s t ECSpace ∗getECSpaceV ( ) c o n s t { r e t u r n _ecSpaceV ; }
54

55 vo id u p d a t e C o n t r o l P o i n t s F o r E x a c t D e s c r i p t i o n (
56 c o n s t s t d : : v e c t o r < DCoordina te3 > &c o e f f i c i e n t s ) ;
57

58 v i r t u a l T r i a n g u l a t e d M e s h 3 ∗ Genera t e Image (
59 GLuint u _ d i v _ p o i n t _ c o u n t , GLuint v _ d i v _ p o i n t _ c o u n t ,
60 GLenum u s a g e _ f l a g = GL_STATIC_DRAW ) ;
61 } ;
62 }

A GUI mappa tartalmaz minden, a felhasználói felületen megjelenő elemet, illetve a felhasználó által
előidézett események kezelését. A Model katalógusban találhatók a színteret, illetve az ebben elhelyez-
hető elemeket tároló osztályok. A tárolás, megjelenítés és egérműveletek egységes kezelése érdekében
a színtéren megjelenített görbéket és felületeket jelképező CurveItem és SurfaceItem osztályok egyaránt
a SceneItem interfészt (csak tiszta virtuális tagfüggvényekkel rendelkező osztályt) implementálják. A
SetupECSpaces katalógus tartalmazza a 2.1.5. pontban bemutatott KC-teret beállító dialógusablakot, a
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2. FEJEZET: IMPLEMENTÁCIÓS RÉSZLETEK

SetupExactDescription pedig az egzakt leírás beállítását teszi lehetővé (ld. 2.1.6. pont). Végül az eszköz-
tár egyes füleinek, illetve a színteret tartalmazó és OpenGL kontextussal rendelkező elemnek (GLWidget)
is megfelel egy-egy osztály a GUI mappában.

A felhasználói felület egy-egy összetett eleméhez (melyek az ún. Widget-ek) az általunk bevezetett
osztály mellett tartozik egy Ui névtér alatt található osztály is, melyet a grafikus szerkesztő által lementett
XML fájlból a Qt keretrendszer fejlesztői csomagjának részét képező qmake program generál fordításkor.
A grafikus felületszerkesztő jelentősen gyorsítja az egyes Widget-ek elkészítését.

2.16. ábra. A Qt Creator grafikus szerkesztője

2.3. Néhány algoritmus implementációjának vázlatos tesztelése

Az ábrák alapján történő megítélés mellett szerettük volna, ha valamilyen automatikus módszerrel is
meg tudunk győződni arról, hogy az ismertetett numerikus algoritmusok implementációja helyes, illetve
az egyes módosítások és optimalizálási kísérletek során sem romlik el. Ezt a célt szolgálja a forráskód
részét képező project_tests könyvtár tartalma, mely egy a Qt Test keretrendszerre épülő unit-teszt pro-
jekt, mely a 2.17. ábrán látható osztályokat foglalja magába (bár az általunk implementált tesztek inkább
komponens-tesztek, melyek az ECSpace, OrdinaryBasisFunction és CharacteristicPolynomial osztályo-
kat együttesen tesztelik, itt is a unit-teszteknél megszokott ellenőrző függvényeket használjuk, melyeket
a Qt keretrendszer ezen alrésze biztosít, a futtatási környezet mellett).

Az OrdinaryBasisFunctionTests osztályban azt teszteljük, hogy a hagyományos bázisfüggvények
(nullad- és magasabb rendű) deriváltjait helyesen értékeli-e ki az OrdinaryBasisFunction osztály. Az ott
implementált Leibniz-szabály által adott eredményeket hasonlítjuk össze a kézzel kiszámított explicit
alakok behelyettesítési értékével néhány rögzített esetben.

Az ECSpaces alkönyvtárban található tesztek azt a tényt használják ki, hogy bizonyos függvényte-

36



2. FEJEZET: IMPLEMENTÁCIÓS RÉSZLETEK

2.17. ábra. A tesztelést megvalósító osztályok

rek esetében az egyedi normalizált B-bázis explicit alakja is ismert. Ez lehetővé teszi, hogy az általá-
nos implementáció által kiszámított bázisfüggvényeket az explicit alakokkal hasonlítsuk össze (ezáltal
észrevegyünk esetleges olyan eltéréseket, amik nem csak a számítási pontatlanságnak tudhatók be). A
PolynomialECSpaceTests osztály a legfeljebb n-edfokú polinomok terében az ismert alakú Bernstein-
polinomokból álló NB-bázist használja összehasonlítási alapként, míg a T1ECSpaceTests osztály az〈{

1, sin(x), cos(x) : x ∈ [0, β], β < π
}〉

térben ismert NB-bázisfüggvényeket, melyek alakja:

b2,0(u) =
1

sin2
(
β
2

) sin2
(
β − u
2

)
,

b2,1(u) =
2 cos

(
β
2

)
sin2

(
β
2

) sin

(
β − u
2

)
sin
(u
2

)
,

b2,2(u) =
1

sin2
(
β
2

) sin2
(u
2

)
.

(2.1)

2.4. Kódrészlet. A T1ECSpaceTests osztály valuesTest() metódusa

1 vo id T1ECSpaceTests : : v a l u e s T e s t ( )
2 {
3 f o r ( do ub l e i n p u t = 0 ; i n p u t <= 1 ; i n p u t += 0 . 0 0 1 ) {
4 QVERIFY2 (
5 s t d : : abs ( _ecSpace−>NNBBaseDer iva t ive ( 0 , 0 , i n p u t ) − e x p l i c i t 0 ( i n p u t ) ) < TOLERANCE,
6 " F i r s t b a s i s f u n c t i o n wrong " ) ;
7

8 QVERIFY2 (
9 s t d : : abs ( _ecSpace−>NNBBaseDer iva t ive ( 1 , 0 , i n p u t ) − e x p l i c i t 1 ( i n p u t ) ) < TOLERANCE,

10 " Second b a s i s f u n c t i o n wrong " ) ;
11

12 QVERIFY2 (
13 s t d : : abs ( _ecSpace−>NNBBaseDer iva t ive ( 2 , 0 , i n p u t ) − e x p l i c i t 2 ( i n p u t ) ) < TOLERANCE,
14 " T h i r d b a s i s f u n c t i o n wrong " ) ;
15 }
16 }

Tekintsük például a T1ECSpaceTests osztály 2.4. kódrészletben látható valuesTest()metódusát.
A [0, 1] intervallumot ezred nagyságú lépésenként végigpásztázzuk és minden értékre teszteljük, hogy
az explicit0, explicit1 és explicit2 függvényekben implementált (2.1)-beli b2,0(u), b2,1(u)
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illetve b2,2(u) függvényalakok behelyettesítési értékeivel közelítőleg megegyező értéket kapunk-e az
ECSpace osztály NNBBaseDerivative metódusától. Amennyiben nem, a keretrendszer QVERIFY2
makrója a megfelelő hibaüzenettel jelzi, hogy a teszteset sikertelen.

Végül a BasisTransformationTests osztály három különböző típusú KC-tér esetében ellenőrzi, hogy a
generált bázistranszformációs mátrix helyesen alakít-e az át az NB-bázis és a hagyományos bázis között.
Az alábbiakban a teszt-keretrendszer kimenete látható a BasisTransformationTests futtatása közben:

********* Start testing of BasisTransformationTests *********

Config: Using QtTest library 5.10.1, Qt 5.10.1

(x86_64-little_endian-lp64 shared (dynamic) release build;

by GCC 7.3.1 20180406)

PASS : BasisTransformationTests::initTestCase()

PASS : BasisTransformationTests::testForBernstein()

PASS : BasisTransformationTests::testForTrigonometric()

PASS : BasisTransformationTests::testForAlgebraicTrigonometric()

PASS : BasisTransformationTests::cleanupTestCase()

Totals: 5 passed, 0 failed, 0 skipped, 0 blacklisted, 10ms

********* Finished testing of BasisTransformationTests *********
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3. fejezet

Alkalmazási lehetőségek

3.1. Hatékonyság futásidő szempontjából

Az általánosság előnyei és az instabilitás megelőzésének problémája mellett a bemutatott algorit-
musokban szereplő nem kevés számítás aggodalomra adhat okot a futásidő szempontjából. Az alábbi
táblázatban összefoglalunk néhány átlagolt mérési eredményt.

KC-tér Görbepontok kiértékelése (1000 darab) Felületpontok kiértékelése (50 x 50 darab)

P5 4.164 ms 8.582 ms

P11 22.887 ms 47.753 ms

T11 24.204 ms 126.817 ms

AT13 66.364 ms 534.541 ms

AE10 52.468 ms 222.778 ms

AET13 195.819 ms 4044.96 ms

3.1. táblázat. Mért futásidők különböző KC-terek esetében

Az első oszlopban található jelöléseknek a következő KC-terek felelnek meg:

P5 =
〈 {

1, u, u2, u3, u4, u5 : u ∈ [0, 1]
} 〉
,

P11 =
〈 {

1, u, u2, ..., u11 : u ∈ [0, 1]
} 〉
,

T11 =
〈{

1, cos(u), sin(u), cos(2u), sin(2u), ..., cos(5u), sin(5u) : u ∈ [0,
π

2
]
}〉

,

AT13 =
〈{

1, uj cos(ku), uj sin(ku) : u ∈ [0,
π

2
], j ∈ {0, 1, 2}, k ∈ {1, 2}

}〉
,

AE10 =
〈{

1, ujeku : u ∈ [0, 1], j ∈ {0, 1, 2}, k ∈ {1, 2, 3}
}〉

,

AET13 =
〈{

1, ujeu cos(u), ujeu sin(u), ujeu cos(2u), ujeu sin(2u),

uje2u cos(u), uje2u sin(u) : u ∈ [0, 1], j ∈ {0, 1}
}〉
,
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A táblázat egyes celláiban görbék esetén 500, felületek esetén pedig 100 mérés átlaga látható. A
méréseket egy Intel(R) Core(TM) i7-3720QM processzorral végeztük 2.6GHz-es órajel mellett. A prog-
ramot a GNU GCC 8.1.0-s verziójával fordítottuk -O2 optimalizációs szinten és 64 bites módban Linux
kernel felett futtattuk.

A görbék esetében az értelmezési tartományon 1000 darab egyenlő közű osztópontot vettünk fel, s
ezekben számoltuk ki a görbepont helyét. A felületek esetében mindkét paraméterirányban ugyanazzal a
KC-térrel számoltunk és irányonként 50–50 osztópontot vettünk fel az értelmezési tartományon.

Látható, hogy magas dimenziószámú terek fölött értelmezett görbék és felületek esetében a megjele-
nítés már nem mondható valós idejűnek akkor, ha mozgás közben is szeretnénk látni az egyes elemeket.
Ezen egyrészt javíthatunk úgy, hogy a minőségből feláldozva kevesebb osztópontot használunk. Ugyan-
akkor megfigyelhetjük, hogy a keverőfüggvények értékei nem változnak a kontrollpontok, illetve a teljes
görbe vagy felület transzformációjakor, ezért ezeket a függvényértékeket (és deriváltakat) egy gyorsí-
tótárban megőrizhetjük egészen addig, amíg a KC-tér, illetve az osztópontok száma változatlan marad.
Az alkalmazásban a felületek megjelenítéséhez használtunk ilyen gyorsítótárat, melynek eredményeként
megszűnt a látható késés az egérkurzor és egy kontrollpont mozgása között, amikor annak helyét meg-
változtattuk.

3.2. Példák

3.2.1. Egy logaritmikus spirál előállítása

Az alkalmazás segítségével állítsuk elő az
x = e

1
4
t cos(t)

y = e
1
4
t sin(t)

z = 0

(3.1)

logaritmikus spirált, ahol t ∈ [0, 3π].
Figyeljük meg, hogy a B-görbékkel történő egzakt leíráshoz szükséges lesz felvenni az

ETα,β2 :=
〈{

1, e
1
4
t cos(t), e

1
4
t sin(t)

}〉
(3.2)

KC-teret, melynek hagyományos bázisfüggvényeiből előállítható a (3.1)-es paraméteres alak, ahol az
[α, β] intervallumot az l′

(
ETα,β2

)
kritikus hossznál rövidebbre kell állítani (ezt a feltételt grafikusan

fogjuk ellenőrizni). Az egzakt leírás beállításához tehát a 0 és 1
4± i gyökök szükségesek, ugyanis a (3.2)-

es tér az ezek által meghatározott y(3) − 1
2y

(2) + 17
16y

(1) = 0 lineáris homogén differenciálegyenlet
megoldástere.

Indítsuk el az alkalmazást és az eszköztáron kattintsunk az Add Curve gombra. A megjelenő görbe
lesz a spirál első íve. A Curve fülön kattintsunk a Setup EC Space gombra és állítsuk be a gyököket a 3.1.
ábrának megfelelően. Ha a teljes [0, 3π] intervallumot adtuk volna meg értelmezési tartománynak, a 3.2.
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3.1. ábra. Az első ív KC-terének beállítása

ábrán látható eltorzult függvényeket láttuk volna az előnézeti fülön, a szükséges bázisfüggvényekből
alkotott tér ugyanis nem KC típusú ezen az intervallumon, tehát nem létezik NB-bázis. Kísérletezéssel
beláthatjuk, hogy az értelmezési tartomány π

2 hosszú részekre való feldarabolása már megfelel, ezért
az első ív értelmezési tartományát a

[
0, π2

]
intervallumra állítottuk a 3.1. ábrán. Érdemes a beállított

paramétereket elmenteni a Save For Later Use gombra kattintva, a további ívek esetében ugyanis csak
az értelmezési tartományt kell változtatni.

Mentsük le a KC-tér beállítását, majd állítsuk be az együtthatókat az egzakt leíráshoz az Update
Control Points For Exact Description gombra kattintva. A (3.1)-es paraméteres alaknak megfelelően
a 3.3. ábrán látható együtthatókat kell megadnunk. Az Update gombra kattintva az első ív a végleges
helyére kerül.

3.2. ábra. Túl nagy értelmezési tartomány, melyen a differenciálegyenlet megoldástere nem KC típusú
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3.3. ábra. Az egzakt leíráshoz szükséges együtthatók

A fentebbi eljárást megismételve az értelmezési tartomány további öt darabjára az eredeti logaritmi-
kus spiráldarab egy B-görbék segítségével történő egzakt leírását kapjuk meg, mely a 3.4. ábrán látható.

(a) az ívek és kontrollpoligonjaik (b) elsőrendű deriváltak

3.4. ábra. A (3.1)-es logaritmikus spirál
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3.2.2. Egy vegyes exponenciális-trigonometrikus felület előállítása

Állítsuk elő egzakt módon a következő felületet ([Róth, 2017], (30)-as felület):

s(u, v) =

s
0(u, v)

s1(u, v)

s2(u, v)

 =

 (1− e
ω0u) cos(u)

(
5
4 + cos(v)

)
(eω0u − 1) sin(u)

(
5
4 + cos(v)

)
7− eω1u − sin(v) + eω0u sin(v)

 , (3.3)

ahol (u, v) ∈
[
30π
8 , 50π8

]
×
[−π

3 ,
5π
3

]
, ω0 = 1

6π és ω1 = 1
3π . Ahhoz, hogy B-felülettel egzakt leírást

végezzünk, u irányban az

ETα0,β0
6 :=

〈
{1, cos(u), sin(u), eω0u, eω1u, eω0u cos(u), eω0u sin(u) : u ∈ [α0, β0]}

〉
,

v irányban pedig a
Tα1,β1
2 :=

〈
{1, cos(v), sin(v) : v ∈ [α1, β1]}

〉
KC-tereket kell felvegyük, ahol β0 − α0 > 0 és β1 − α1 > 0 kisebbek kell legyenek, mint a megfelelő
terek (és deriváltjaik) kritikus intervalluma (mely tulajdonságokat grafikusan fogunk ellenőrizni).

Indítsuk el az alkalmazást és a View fülön kattintsunk az Add Surface gombra. A megjelenő felület
még nem a megfelelő típusú KC-terekre épül. Változtassuk meg az u paraméteriránynak megfelelő teret
a Surface fül Setup EC Space U gombjára kattintva. Állítsuk be a gyököket az ETα,β6 tér hagyományos
bázisfüggvényeinek megfelelően (ld. 3.5. ábra), majd vegyük észre, hogy ha a

[
30π
8 , 50π8

]
intervallumot

választjuk értelmezési tartománynak, a függvények alakja nem megfelelő (vagyis kisebb intervallumon
lesz csak KC típusú a tér, ez kísérletezéssel vagy az elméleti kritikus hossz kiszámításával is megkapha-
tó). Jelen esetben ilyen intervallumok lesznek a

[
30π
8 , 35π8

]
,
[
35π
8 , 40π8

]
,
[
40π
8 , 45π8

]
és
[
45π
8 , 50π8

]
, ami azt

jelenti, hogy u irányban négy sávra fogjuk osztani a felületet. A 3.5. ábrán látható esetben ezek közül az
első intervallumot választottuk. Célszerű (fájlba vagy memóriába) menteni a beállítást a Save For Later
Use (mentés későbbre) gombra kattintva, hiszen a soron következő foltok esetében már egyáltalán nem,
vagy pedig csak az értelmezési tartományon kell majd változtatni.

Állítsuk most be a v-irányú KC-teret. Itt csak egy valós gyököt (0) és egy komplex gyökpárt (0± 1 i)
kell megadnunk. A teljes

[−π
3 ,

5π
3

]
intervallumon megint nem rendelkezik KC tulajdonsággal a konst-

rukció, viszont a
[−π

3 ,
π
3

]
,
[
π
3 ,

3π
3

]
és
[
3π
3 ,

5π
3

]
intervallumokon már igen, tehát v irányban három sávra

bontjuk a felületet (így az összesen tizenkét foltból fog előállni). Használjuk most az első intervallumot
(
[−π

3 ,
π
3

]
). Ekkor az NB-bázisfüggvények alakja a 3.6. ábrán látható.

Végül szükséges a kontrollpontokat beállítanunk úgy, hogy a felületi folt tényleg az eredeti felület egy
(az értelmezési tartomány leszűkítései által meghatározott) darabját írja le. Ennek céljából a megfelelő
együtthatókat be kell töltenünk az egzakt leírásért felelős dialógusablakba, melyet az Update Control
Points For Exact Description gomb lenyomásával érhetünk el. A megfelelő paraméterek beállítása után
(ld. 3.7. ábra) ismét érdemes az együtthatókat elmenteni, hiszen minden felületi folt esetén ugyancsak
ezekre lesz szükség.

Ezek után a 3.8. ábrán látható felületi folt jelenik meg. A teljes felület leírásához az előbbi lépéseket
el kell végeznünk mind a tizenkét lehetséges intervallumpárosítás esetén. Jelentősen megkönnyíthetik a
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3.5. ábra. Az első felületi folt u irányú KC-terének beállítása

3.6. ábra. Az első felületi folt v-irányú KC-terének NB-bázisfüggvényei

dolgunkat a menet közben készített mentések (általában elég lesz csak az intervallumokat átállítani és a
kontrollpontokat befrissíteni minden folt esetén). A kész felület a 3.9. ábrán látható.

Az így előállított felület egyes darabjaira szükség szerint alkalmazhatjuk a rendszámnövelési és fel-
osztási algoritmusokat. A kontrollpontok is elmozdíthatóak az egérrel, viszont a (nullad vagy magasabb
rendben folytonos) illesztések megtartása az alkalmazásban jelenleg még nem implementált (de értékes
továbbfejlesztési lehetőséget jelent).

Ezek után elvégezhetjük például a 3.9. ábra egyik felületi foltjának u irányú felosztását az értelmezési
tartomány harmadolópontjánál (lásd a 3.10. ábra), majd a finomabb kontroll érdekében rendszámnöve-
lést is végrehajthatunk a kijelölt folton, például a v paraméterirányában eggyel megnövelve a 0 gyök
multiplicitását (lásd a 3.11. ábra).

44



3. FEJEZET: ALKALMAZÁSI LEHETŐSÉGEK

3.7. ábra. Az egzakt leírás beállítása

3.8. ábra. Az előállított első felületdarab (elfordítva)

3.9. ábra. A teljes előállított felület (elfordítva)
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3. FEJEZET: ALKALMAZÁSI LEHETŐSÉGEK

3.10. ábra. A felület egyik darabján felosztást végeztünk

3.11. ábra. Rendszámnövelés v paraméterirányban
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Összefoglaló

A kiterjesztett Csebisev-terek felett értelmezett B-görbék és B-felületek az ismert és gyakorlatban
használt görbe- és felülettípusok nagy részének egzakt leírását képesek általánosan megvalósítani. Hát-
rányuk a specializált keverőfüggvény-rendszerekkel szemben a nagyobb kiértékelési költség, illetve bi-
zonyos esetekben az algoritmusok gyengébb numerikus stabilitása. Ugyanakkor számos előnnyel rendel-
keznek:

– a függvénytér és az értelmezési tartomány módosítása által megengednek szabadon állítható alak-
vagy feszültségi paramétereket;

– magasabb, vagy akár végtelen rendű (parciális) deriváltakra vonatkozó precizitást biztosítanak;

– olyan gyakorlati felhasználhatósággal és ipari jelentőséggel bíró, transzcendentális görbék / felü-
letek egzakt leírását is lehetővé teszik, melyek a napjaink modellezőrendszereiben szabványként
használt, nem feltétlenül egyenletes csomóvektorú, racionális B-spline-görbékkel / felületekkel
legfeljebb csak közelíthetőek;

– a hagyományos paraméteres alakban adott, de nem törtfüggvényekkel leírt görbék / felületek ese-
tén csupán kontrollpont-alapú, súlyvektor / súlymátrix nélküli egzakt előállítást biztosítanak;

– kondíciószám és numerikus kiértékelés szempontjából, valamely függvénytér nemnegatív normali-
zált B-bázisa az egyértelmű olyan teljesen pozitív, lineárisan független normalizált függvényrend-
szer, mely optimálisan stabil (ld. [Mainar és Pena, 1999, 3.4. következmény]) az adott függvénytér
összes nemnegatív bázisa közül.

A releváns elméleti eredmények felidézése után bemutattuk a dolgozatot kísérő alkalmazást, mely
ezen eredményeket próbálja meg gyakorlatba ültetve szemléltetni mindenek előtt a kísérleti tanulmá-
nyozhatóság céljából. Megvalósítottuk az NB-bázisfüggvények (nullad- és magasabb rendű deriváltjai-
nak) kiértékelését, a görbék és felületek rendszámnövelését és felosztását, illetve a paraméteres alakban
megadott görbék és felületek egzakt leírását.

Az implementáció során tanulságos volt az egyes egéresemények (kijelölések, mozgások) kezelésé-
nek megvalósítása is, illetve a Qt keretrendszer signal–slot mechanizmusának felhasználása a felhaszná-
lói felület bonyolultabb elemei közötti kommunikáció megvalósítására.

Az alkalmazásban nem szereplő, de hasonló modellező rendszertől elvárható tulajdonságok száma
jelentősen nagy, továbbfejlesztési lehetőség például az elemek (adott folytonossági rendű) illesztése, egy
a változtatások visszafordítására alkalmas kiegészítés (undo-redo mechanizmus), illetve foltokból álló
sávok kigenerálásának lehetősége (például az adott értelmezési tartomány automatikus felosztása révén).
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