
LICEUL TEORETIC CAREI
PROFILUL: REAL

SPECIALIZAREA: MATEMATICĂ-INFORMATICĂ

LUCRARE DE ATESTAT

BAZE DE DATE ÎN 
PROGRAMAREA WEB

COORDONATOR    ABSOLVENT
Prof. Gózner Róbert    Beiland Arnold

2015



NAGYKÁROLYI ELMÉLETI LÍCEUM

Informatika szakvizsga

Adatbázisok a webprogramozásban

Felkészít  tanárő  Tanuló
Gózner Róbert  Beiland Arnold

2015



Tartalomjegyzék

1 Adatbázisok 2
1.1 Bevezető . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Adatbázis-kezelő rendszerek . . . . . . . . . . . . . . . . . . . 2
1.3 Relációs adatmodell . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Attribútumok és sorok . . . . . . . . . . . . . . . . . . 4
1.3.2 Indexek . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Megszorítások . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 Nézetek . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Adatbázis-tervezés . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Webprogramozás 8
2.1 HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 SQL, MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Aeval Project 14
3.1 Bevezető . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Weboldal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Adatbázis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Evaluátor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Irodalomjegyzék 22

1



1. Adatbázisok

1.1 Bevezető
Az adatbázis adatok rendezett gyűjteménye. A benne szereplő informáci-

ók gyűjtése és rendezése általában a világ valamely valóságelemének megra-
gadására alkalmas modell alapján történik, oly módon, hogy a rendelkezésre
álló adatok könnyen feldolgozhatóak és hozzáférhetőek legyenek. Például
modellezhető egy üzlet raktára úgy, hogy ellenőrizhető és frissíthető legyen a
termékkészlet, az egyes termékek ára. Így az adatbázisok és adatbázis-kezelő
rendszerek gyakran alkalmazást nyernek például könyvelőségi, számviteli te-
rületeken is.

Az adatbázisok gyakran valamilyen cég adatait is tárolják, szerepük van
az ügyfelek (esetleg online) kiszolgálásában, hozzáférést tesznek lehetővé bi-
zonyos adatokhoz, kapcsolatot teremtenek az ügyfél és az adott intézmény
között.

Nem hanyagolható el az adatbázis-felhasználás mértéke a weblapok ese-
tében sem, ahol felhasználói adatok, bejegyzések, multimédia anyagok tá-
rolására szolgálnak. Jelen dolgozat ezt szeretné bemutatni egy viszonylag
egyszerű példán keresztül.

1.2 Adatbázis-kezelő rendszerek
Az adatbázis-kezelő rendszerek (Database Management Systems–DBMS)

olyan szoftvereszközök, amelyek bizonyos modellek alkalmazása által adat-
bázisokat tartanak fenn, megengedik a felhasználóknak ezek manipulálását
bizonyos deklaratív programozási nyelveken, parancssori vagy grafikus felü-

2



leteken keresztül. Egy adatbázis-kezelőnek biztosítania kell az adatok bevi-
telét, tárolását, módosítását és lekérdezését.

A mikroprocesszorok, memória, tárolóeszközök és számítógépes hálózatok
növekedését követve a gyakorlatban használt adatbázisok és az ezeket kezelő
szoftverek jelentős növekedésen mentek keresztül, mind méret, mind pedig
összetettség szempontjából. Az adatbázis-kezelő rendszerek fejlődése három
nagy korszakra osztható az adatmodell szerkezete szerint: navigációs, relációs
és poszt-relációs rendszerek.

A két fő korai navigációs adatmodell a hierarchikus modell(amit az IBM
kezdeményezett) és a CODASYL modell(hálózati modell) voltak, az ezeken
alapuló adatbázis-kezelők már az 1960-as évek közepén elterjedtek.

A relációs modellt elsőként Edgar F. Codd javasolta 1970-ben. Az adatel-
érés itt táblázatalapú, inkább tartalom alapján mintsem linkek követése által
történik. A számítógépek hardvere csak az 1980-as években vált elég fejletté
ahhoz, hogy a relációs rendszerek széles körben elterjedhessenek.

A poszt-relációs rendszerek esetében az objektum-orientált adatmodell,
a kulcs-érték alapú adatbázisok, illetve a dokumentum orientált adatbázisok
a dominánsak. Ezek létrejöttét általában a relációs modell felhasználásakor
megnyilvánuló bizonyos hiányosságok indokolták(például objektum-orientált
programozási nyelvben nem célszerű táblázatszerű adatbázisból lekérdezni).

1.3 Relációs adatmodell
A relációs modell táblákon alapul. Az alábbi példában szereplő relá-

ció(táblázat) ügyfeleket ír le: a nevüket, a telefonszámukat és az email-
címüket. Minden ügyfélhez egy-egy sorbejegyzés tartozik.

név telefon email
Kiss Zoltán 0789654321 kiss.zoltan@fiktiv.ro
Nagy Andrea 0793123456 nagy.andrea@masik.hu
Beke Géza 0744555666 bekegeza@nincs.com

... ... ...

3



1.3.1 Attribútumok és sorok
A reláció oszlopait az attribútumok látják el névvel, az előbbi példában

ezek: név, telefon, email. Általában az attribútumok megadják az abban
az oszlopban szereplő adatok jelentését. Minden attribútumhoz tartozik egy
adattípus, amely megszabja az oszlopban előforduló értékek milyenségét.

A reláció azon sorait, amelyek különböznek az attribútumokból álló fejléc
sorától, soroknak (tuple) nevezzük. A reláció minden egyes attribútumához
tartozik a sorban egy komponens.

Az idők során a relációk többször is változhatnak. A változások egy ré-
sze várhatóan a reláció soraira fog vonatkozni, mint például új sorok beszú-
rása, azaz az új ügyfelek adatbázisba vétele, létező sorok megváltoztatása,
esetleg sorok törlése. A relációséma(attribútumok összessége) megváltoz-
tatása kevésbé általános, és nagy adatszettek esetén igen költséges műve-
let(előfordulhat például, hogy több millió sort kell átírni).

1.3.2 Indexek
Az index a táblához kapcsolódó, gyors keresést lehetővé tevő táblázat,

amelyet az adatbázis-kezelő rendszer tart fent. Tartalmazza, hogy a tábla
rekordjai(sorai) egy vagy több oszlop alapján(például név) sorba rendezve
hogyan következnének egymás után. Ez nem jelenti a teljes tábla megismét-
lését többféle rendezettséggel: az index csak egy mutató, amely hivatkozik a
táblára. Az indexek fizikai(implementáláskor megadott) szerkezete általában
B-fa, ami a tábla végigjárásánál nagyságrendileg gyorsabb(kisebb komplexi-
tású) keresést tesz lehetővé. Az indexek létrehozása jelentősen növeli az
adatbázis hatékonyságát, de méretnövekedést is okoz.

1.3.3 Megszorítások
A megszorítások vagy kényszerek(constraitns) a lehetséges adatok halma-

zát leíró korlátozási szabályok. Sokan a tábla elsődleges kulcsát is egyfajta
megszorításnak tekintik, hiszen az elsődleges kulcs maga után von egy egye-
diségi (UNIQUE) kényszerfeltételt.

4



A külső kulcs egy olyan megszorítás, amely esetén hogy egy tábla bizonyos
oszlopa csak egy másik tábla egy bizonyos oszlopának értékeit veheti fel.
Ezzel az előírással az adatbázis integritását, helyességét biztosítjuk, ezért is
szokták a külső kulcs megszorításokat integritási megszorításoknak is nevezni
(integrity constraint).

1.3.4 Nézetek
A nézet tulajdonképpen egy állandósított lekérdezés: egy vagy több tábla

valamely oszlopai egymás mellé rendezve. Ha több tábláról van szó, akkor
a nézet az összekapcsolás szabályait is tartalmazza. Mint neve is mutatja,
általában arra használjuk, hogy adatainkat egy bizonyos szemszögből, egy
bizonyos rendezettséggel mutassa.

Az adatbázisban a nézet fizikailag nem létezik, csak relációs műveletek
eredményeként. Bizonyos adatbázis-kezelő rendszerek külön grafikus felületet
biztosítanak nézetek szerkesztésére.

ábra 1.1: Nézetszerkesztés Microsoft Accessben

5



1.4 Adatbázis-tervezés
Az adatbázis-tervezés egy folyamat, mely több lépésből tevődik össze.

Először az adatbázisban leképezendő rendszert elemzésnek vetjük alá és meg-
határozzuk a tárolandó adatok körét, azok egymás közötti kapcsolatait és az
adatbázissal szemben felmerülő igényeket (fogalmi séma).

Ezután következik a rendszer tervezés, melynek eredménye az adatbázis
logikai modellje. Végül fizikai szinten képezzük le a logikai adatbázis modellt
az alkalmazott szoftver és hardver függvényében.

Az elemzés egyik lépése a funkcionális függőségek megkeresése. Azt mond-
juk, hogy funkcionális kapcsolat áll fenn bizonyos adatok között, ha egy vagy
több adat konkrét értékéből más adatok egyértelműen következnek. Például
a személyi szám és a név között funkcionális kapcsolat áll fenn, mivel minden
embernek különböző személyi száma van.

Szintén fontos feladat a redundanciák megszüntetése. Redundanciáról
akkor beszélünk, ha valamely tényt vagy a többi adatból levezethető mennyi-
séget ismételten (többszörösen) tároljuk az adatbázisban. A redundancia, a
szükségtelen tároló terület lefoglalása mellett, komplikált adatbázis frissítési
és karbantartási műveletekhez vezet, melyek könnyen az adatbázis inkon-
zisztenciáját okozhatják. Egy adatbázis akkor inkonzisztens, ha egymásnak
ellentmondó tényeket tartalmaz.

A reláció elmélet módszereket tartalmaz a redundancia megszüntetésére,
az úgynevezett normál formák segítségével. Egy reláció első normál formá-
ban van, ha minden attribútuma egyszerű, nem összetett adat. A második
normál forma feltétele, hogy a reláció minden nem elsődleges attribútuma
teljes funkcionális függőségben legyen az összes relációkulccsal.

Íme egy reláció első normál formában:

Diákazonosító Időpont Terem Előadás Férőhely
C105 08:00 01 Analízis 150
C106 09:00 02 Algebra 100
C107 10:00 01 Mitológia 150
... ... ... ... ...

6



Figyeljük most meg, hogy az előbbi táblázatban fölöslegesen szerepel
többször egy adott terem férőhelyeinek száma, tehát redundanciával talál-
kozunk. Ez megszűnik, ha az előbbi relációt szétbontjuk, megszüntetjük a
redundanciát és az adatszerkezetet második normál formára hozzuk:

Diák-azonosító Időpont Terem Előadás
C105 08:00 01 Analízis
C106 09:00 02 Algebra
C107 10:00 01 Mitológia
... ... ... ...

Terem Férőhely
01 150
02 100
... ...

Elkerültük az adatismétlődést, ezzel megelőztük azon problémákat, ame-
lyek egy adott teremben a férőhelyek számának megváltozásakor merülnének
fel(most már nem kellene az összes előfordulást kicserélni).

Nyilvánvaló tehát, hogy a tárolni kívánt adatok elemzése, az adatbázis tu-
datos tervezése és elméleti módszerekkel való ellenőrzése nem csak elvi érték,
hanem a gyakorlatban is nagyon fontos lépés. Értelmezettek az adatbázis-
elméletben magasabb rendű normál formák is, ezek tárgyalásával viszont
jelen dolgozat nem foglalkozik.

7



2. Webprogramozás

A webprogramozás egy gyűjtőneve mindazon fejlesztési tevékenységnek,
amelyet egy weblap létrehozása, vagy egy webszerver működtetése céljából
végzünk(például szerver oldali szkriptek írása).

A World Wide Web(WWW) széleskörű elterjedése óta a webprogramozás
komoly iparággá növekedett, amit azon vállalkozások tápláltak leginkább,
amelyek szerették volna termékeiket és szolgáltatásaikat online eladni a vá-
sárlóknak(mint például egy webáruház).

Mivel az idők folyamán egymást követték az új technológiák, az iparág
eljutott oda, hogy a webfejlesztők már nagyon sok szoftveralkalmazást we-
bes szolgáltatásként is elkészítenek(gondolhatunk például a Google Earth –
maps.google.com párosra). Ez elméletileg komoly előnyökkel jár, mert plat-
formfüggetlenné lehet tenni a szolgáltatásokat. A gyakorlatban azonban a
böngészők különbözősége néha nagyon is közrejátszik a fejlesztésben.

A weblapok a kommunikáció, tartalomszolgáltatás és reklám helyévé is
váltak, megjelentek a szociális hálók, amelyek több millió felhasználónak
nyújtanak szabadidős elfoglaltságot, kapcsolatteremtési lehetőségeket.

Mivel a WWW-hez használt legtöbb hálózati protokoll kliens-szerver ala-
pú, a webfejlesztés általában több részre tagolódik: kliensoldali programozás,
szerveroldali programozás, adatbázis-technológiák felhasználása. A különbö-
ző szoftverek együttműködéséhez szükség volt a szabványosításra, programo-
zási nyelvek bővítésére.

8



2.1 HTML
A Hypertext Markup Language(röviden HTML) a weblapkészítés stan-

dard jelölőnyelve. HTML elemekből(úgynevezett tagekből, fonetikusan: teg)
épül fel. A webböngészők a HTML kódot fordítják le weblapokká, felhasz-
nálva esetleg egy stílusjelölő fájlt(például CSS fájlt). A HTML kód tehát
a weblap szerkezeti elemeit írja le és a bemutatni kívánt tartalmat foglalja
magába, ezen fájlok kiterjesztése általában .html vagy .htm.

A HTML kód eredete visszanyúlik Tim Berners-Lee fizikushoz, aki egyik
cikkében egy Internet alapú hypertext-rendszer felhasználását javasolta a
CERN-ben. Az 1990-es években dolgozta ki az első HTML specifikációt,
valamint szerver és kliens szoftvert is írt. A HTML nyelv számos fejlő-
dési szakaszon ment keresztül és máig is több standard van használatban.
A szabványosításban több szervezetnek is szerepe volt, ilyenek a: World
Wide Web Consortium(W3C), International Organization for Standardizati-
on(ISO), valamint a Web Hypertext Application Technology Working Group
(WHATWG).

A HTML tagek egy hierarchikus rendszert alkotnak. Egy HTML fájl
tartalma például a <hmtl> és </html> tagek közé kerül(A / jel általában
egy tag lezárását jelöli). Íme egy egyszerű weblapszerkezet HTML nyelven:

ábra 2.1: Egyszerű weblap HTML-ben

9



Menjünk végig most az előbbi kódrészleten. A weblap tartalma <hmtl>
és </html> közé kerül, ezt azonban megelőzheti a dokumentumtípus meg-
adása(például HTML5-ben írt kód esetén: <!DOCTYPE html>).

A további kód két részre tagolódik: az úgynevezett fejlécre és testre.
Ezeknek a <head>, </head>, illetve a <body>, </body> a jelölőjük.
A fejlécbe kerülnek az oldallal kapcsolatos meta-információk, jelen esetben
a cím(<title> és </title> tagek között), de szerepelhet itt még karakter-
szett, kulcsszavak a keresőmotorok számára, a készítő neve és elérhetősége,
illetve a csatolni kívánt szkriptek és stílusfájlok deklarálása.

A tulajdonképpeni tartalom a <body> részbe kerül: szöveges bekezdé-
sek, címek, táblázatok, űrlapok, képek vagy más multimédiás tartalom. A
<p>, </p> páros egy bekezdést jelöl. A <h3>, </h3> egy fejlécszerű
címet. Az első bekezdésben pedig a <b> és </b> közé írt szöveg félkövér
karakterekkel jelenik majd meg.

A .html fájlokat közvetlenül is megnyithatjuk egy böngészővel, nincs fel-
tétlenül szükség egy webszerverre csak akkor, ha valamilyen hálózaton ke-
resztül kívánjuk elérhetővé tenni ezeket.

2.2 JavaScript
A JavaScript egy objektum-orientált szkriptnyelv, amelyet szintén a kli-

ensoldali webfejlesztésben használunk, ha a weblap valamilyen eleméhez di-
namikus tartalmat szeretnénk adni(például: ha egy felhasználó egy adott
gombra kattint, tűnjön el vagy jelenjen meg valamilyen szövegrész).

A JavaScript kód vagy a HTML fájlban vagy külön (jellemzően .js ki-
terjesztésű) szövegfájlban van. A futási környezet itt szintén a böngésző. A
JavaScript nyelv már nem csak leíró, hanem rendelkezik az imperatív prog-
ramozási nyelvek elemeivel: változók, adattípusok, utasítások, szelekciók é
ciklusok is megtalálhatóak a szintaxisban.

A JavaScript nyelvhez gyakran írnak különböző programkönyvtárakat,
egyik ilyen a jQuery, amely sokkal rövidebb kódírás árán teszi lehetővé a
bonyolultabb eljárások leírását is. Vonatkozhatunk a weblap elemeire, illet-
ve kérhetünk le adatokat a szerverről is, mindezt háttérben, a felhasználó

10



megzavarása nélkül.
Íme egy kódrészlet JavaScriptben a jQuery programkönyvtár felhaszná-

lásával, mely aszinkron módon egy szöveges adatot kér le a webszervertől,
és megjeleníti azt. A megjelenés helye a weblap egyik objektuma, melyet az
azonosítójával adunk meg(jobtext). Hiba esetén figyelmeztetjük a felhaszná-
lót.

ábra 2.2: JavaScript/jQuery kód

2.3 PHP
Térjünk most a szerverben elvégzendő feladatokra. A weblapok több

módon is kérhetnek vagy küldhetnek információkat a webszervernek, ilyenkor
általában rövid programok, szkriptek lefutását idézik elő. Egy széles körben
elterjedt szerveroldali szkriptnyelv a PHP.

A PHP(Hypertext Preprocessor) szintén teljes értékű programozási nyelv,
beágyazható közvetlenül is a HTML kódba. Ilyenkor még a weblap leküldése
előtt lefut a kód a szerveren, ennek kimenete veszi át a kód helyét.

A PHP kiválóan alkalmas olyan feladatok elvégzésére, amelyeket a kliens-
oldali szkriptnyelvek nagyon körülményesen, vagy egyáltalán nem tudnának

11



elvégezni. Kapcsolatot teremthet például egy adatbázissal, vagy előidézheti
a szerveren bizonyos folyamatok lefutását.

Segítségével a látogatókról statisztikát tudunk készíteni, hozzáférve olyan
adatokhoz, mint például a böngésző neve és verziószáma vagy a használt
operációs rendszer. Ennek akár piackutatási értéke is lehet. Szintén gyakran
alkalmazott az űrlapok feldolgozásában, adatok rendszerezésében és ellenőr-
zésében.

2.4 SQL, MySQL
Az SQL(Structured Query Language) a relációalgebrára épülő deklaratív

nyelv(néhány procedurális elemmel), amelyet legfőképp relációs adatbázis-
rendszerek manipulálására használunk, adatok lekérdezésére, beiktatására,
frissítésére, törlésére, vagy akár relációsémák hozzáadására, megváltoztatá-
sára is.

A MySQL a világ egyik legtöbbet használt relációs adatbázisrendszere,
mely elterjedtségét főleg a weben történő alkalmazásának köszönheti. Mint
a neve is mutatja, SQL nyelven hozzáférhető, és a webhez igazodva, szer-
verszerű megvalósítása van, így fizikailag külön egységen futhat például a
webszerver és a MySQL szerver.

A MySQL rendszerek másik hasznos funkciója a felhasználó alapú pri-
vilégium-rendszer, azaz az adatok manipulálását bizonyos felhasználók, csak
korlátozott módon tehetik meg, a műveletek, amiket elvégezhetnek előre kor-
látozhatók.

A MySQL rendszerrel való kapcsolatteremtést számos programozási nyel-
ven programkönyvtárak teszik lehetővé. A fentebb említett PHP nyelvhez
például két olyan programozási interfész is tartozik, amely széleskörű hasz-
nálatnak örvend, ezek a MySQLi és a PDO.

Példának nézzünk egy PHP kódrészletet, amely csatlakozik egy adatbá-
zishoz és bejelentkeztetés céljából adatokat kérdez le a megfelelő táblából:

12



Észrevehető, hogy a MySQL szerverrel történő interakció egy vagy több
kapcsolat megnyitásából, parancsok kiadásából és ezek eredményeinek feldol-
gozásából, végül pedig a kapcsolat lezárásából áll. Az itt használt MySQLi
modul a PHP objektumorientáltságát is képes kihasználni.

Megfigyelhető továbbá, hogy milyen jellegű egy olyan SQL parancs, ame-
lyet adatok lekérdezése céljából adunk ki(SELECT).

13



3. Aeval Project

3.1 Bevezető
Az Aeval Project egy általam készített weboldal, amely arra hivatott,

hogy bizonyos algoritmikaversenyen megjelent feladatokat oldhasson meg a
látogató, valamint letesztelhesse a megoldásait.

Ezt egy evaluátor rendszer teszi lehetővé, ami bizonyos tesztfájlok és ezek-
re adott helyes kimenetek alapján dönti el a beküldött megoldásról, hogy
helyes-e, közben pedig figyelembe veszi a futásidőt és a memóriahasználatot
is.

A projekt tehát több részre bontható: egy weboldal(kliens és szerverol-
dali résszel), egy adatbázis, amelyben adatokat tárolunk és egy GNU/Linux
operációs rendszeren futó program mely lefordítja, elindítja, illetve elbírálja
a beküldött megoldást. A következő részekben ezt a három részt szeret-
ném külön-külön bemutatni. A mellékletben megtalálható a teljes forráskód,
ami az oldalt hostoló szerverről készített egyik biztonsági mentés(az oldal a
2015-ös tantárgyverseny-időszakban működtetve volt).

3.2 Weboldal
Az Aeval Project weboldal készítése annak figyelembevételével zajlott,

hogy a tartalom, a stílus és az interaktív részek elkülönítése egy könnyen
karbantartható, moduláris rendszert eredményez(például a dizájn megvál-
toztatásához csak a megfelelő .css fájlokat kell átírni, nem kell a HTML
kódba nyúlni, és fordítva, új tartalom hozzáadásakor fel lehet használni a
már definiált stílusosztályokat).

14



ábra 3.1: Aeval Project főoldal

A weboldal kétnyelvű, ahol erre lehetőség volt csak a HTML fájlok ke-
rültek megkettőzésre a redundancia elkerülése érdekében. A továbbiakban
bemutatom a magyar nyelvű változat esetében az egyes fájlok szerepét(az
angol nyelvűben is szinte ugyanúgy épül fel a weblap). Ezek a következők:

http/index.php: Indexoldal, átirányítja a látogatót a http könyvtárból
(ahová a domaincím mutat), a http/hu könyvtárba.

http/hu/header.part.html: A bizonyos lapok közös fejlécét tartalmazó
fájl, ezek a saját kódjukba ékelik be, amely az Apache webszerveren a
Server Side Include(SSI) nevű lehetőségnek köszönhető.

http/hu/footer.part.html: Hasonló az előzőhöz, de ez a közös lábléc.

15



http/hu/index.html: A főoldal, információkat, linkeket tartalmaz a többi
oldalra, a szerver ezt tölti be először, miután az átirányítás az megtör-
tént a http/hu könyvtárra.

http/hu/login.html: Bejelentkezési oldal, amelyen az adminisztrátorok ál-
tal regisztrált felhasználók(nyílt regisztráció nincs, mert az oldal zárt-
körüen működött) bejelentkezhetnek, ami a feladatok megtekintéséhez
ugyan nem, de megoldások beküldéséhez és előzőek megtekintéséhez
már elengedhetetlen.

http/hu/problemlist.php: A feladatok oldala, beékelt PHP kóddal, amely
az adatbázisból kilistázza a feladatokat, illetve a bejelentkezett felhasz-
nálók esetén ezek eddigi legnagyobb pontszámát, amelyet az egyes fel-
adatok esetén elértek.

http/hu/problem.php: Egy adott feladatot mutat, az átadott paraméte-
rek alapján. Kiírja a feladat szövegét, a vele kapcsolatos korlátokat,
a forrást, és a hozzáadás dátumát. Lehetőséget ad a bejelentkezett
felhasználóknak, hogy megoldást küldjenek be az adott feladathoz.

http/hu/show_solutions.php: A beküldött megoldások eredményeit lis-
tázza ki az adatbázisból, paraméterek segítségével lehet megmondani,
hogy melyik feladathoz, illetve melyik felhasználó beküldött megoldá-
sait mutassa.

http/hu/admin.php: Adminisztrációs felület, csak a megfelelő jogosult-
ságú felhasználók férhetnek hozzá. Itt lehet felhasználót hozzáadni,
adatokat módosítani, illetve feladatot hozzáadni.

Mindezen fájlok tartalmat kínálnak, ami ugyan nem lenne jól kinéző a
megfelelő .css fájlok nélkül. Ezek a következők.

http/css/main.css: A fő stílusfájl, azokat a beállításokat tartalmazza, ame-
lyek a főoldalra, vagy általában a teljes weblapra azonosak. A legtöbb
oldal ezt belinkeli, majd szükség esetén felülírja.

16



http/css/problem.css: A http/hu/problem.php oldalhoz készült stílusfájl,
segítségével megoldható, hogy az egyes feladatok szövegei kevesebb he-
lyet foglaljanak az adatbázisban és a feladatok egységesen nézzenek ki,
a felhasználó így a tartalomra tud koncentrálni.

http/css/problemlist.css: A feladatlistázás stílusfájlja. Főleg táblázatfor-
mázó CSS szabályokat tartalmaz.

http/css/signup.css: A bejelentkezési űrlapot formázza.

http/css/solutions.css: A megoldások kilistázását formázza, főleg a táb-
lázatot és az előugró részt.

http/css/admin.css: Az admin-felülettel kapcsolatos CSS szabályokat tar-
talmazza.

A következőkben nézzük meg az egyes kliens- és szerveroldali szkriptek
szerepét és működési módját. Ezek felelnek azért, hogy az oldalon megjelenő
tartalom aktív legyen, létrejöhessen a beléptetőrendszer, valamint a feladatok
megoldásának beküldése.

http/script/data_constants.php: Adatkonstansokat tartalmaz, amelyek-
re a szerveroldali szkripteknek van szükségük. Például az adatbázishoz-
záféréshez használt felhasználónév és jelszó. A mellékletben néhány
nem nyilvános adat helyén *** található.

http/script/jquery-2.1.1.min.js: A jQuery programkönyvtár, mely in-
gyenesen letölthető és leegyszerűsíti a bizonyos funkcióval rendelkező
szkriptek írását.

http/script/main.js: A főoldalhoz, illetve az oldalakhoz közösen tartozó
szkripteket tartalmazó fájl. Leírja például a gombok viselkedését(az
egér föléjük vitelekor színt váltanak), ellenőrzi a bejelentkezettségi ál-
lapotot és annak megfelelően alakítja a weboldal viselkedését.

http/script/login.js: A bejelentkezési oldalhoz tartozó szkript. AJAX,
vagyis Asynchronous JavaScript and XML technológiát használva küldi

17



tovább átlátszó módon a bejelentkező űrlap adatait a process_login.php
szerveroldali szkriptnek.

http/script/process_login.php: Az előző szerveroldali párja, ellenőrzi
az átadott felhasználónevet és jelszót, tárolja az adott bejelentkezési
szesszió adatait, valamit beállítja a megfelelő sütiket, amelyek a követ-
kező HTTP csomagban jutnak el a böngészőhöz.

http/script/logout.php: Kijelentkezési szerveroldali szkript. A main.js
által kerül meghívásra, amikor a felhasználó ki akar jelentkezni.

http/script/solutions.js: A megoldások oldalához tartozik a kliensolda-
lon. Azokat az eseteket kezeli, amikor a felhasználó az egyik beküldött
megoldás forráskódjára, vagy elbírálási eredményére kíváncsi. Ezeket a
szervertől szintén Ajax alapú kommunikációval kapja meg, meghívja a
getobjtext.php, illetve getobjsource.php szkripteket, amelyek a megfeleló
fájl vagy adatbázis-reláció tartalmát visszaszolgáltatják.

http/script/send_solution.php: A beküldött megoldás fogadásáért és az
evaluátor elindításáért felelős. ír a megfelelő adattáblába, kezeli a fájl-
feltöltést és meghívja az elbíráló programot.

A további szkriptek az adminfelület eszközei(szintén kliens-szerveroldali
párok): insertproblem.js, insert_problem.php, signup.js, process_signup.php,
usermod.js, process_usermod.php. Mint a nevük is mutatja, feladat beszúrá-
sát, felhasználó regisztrálását, illetve felhasználói adatok módosítását teszik
lehetővé az erre jogosultaknak.

3.3 Adatbázis
Az Aeval Project-hez tarttozó adatbázis bizonyos adatok rendszerezett tá-

rolását, rendezését és a gyors megkeresését biztosítja, szerkezete igyekszik a
redundanciát kerülni(például a felhasználót egy id azonosítja az összes táblá-
ban, nem szerepel mindenhol a neve). Az adatbázis szerkezetéről és tartalmá-
ról a mentés a mellékletben, az aeval-dump_03.03.2015.sql fájlban található,

18



amely azon SQL parancsok és MySQL makrók egymásutánja, amellyel a tel-
jes adatbázist fel lehet építeni(jelen fájlban a nem nyilvános adatok helyét
szintén *** veszi át).

A következőkben lássuk, hogy melyik reláció milyen mezőket tartalmaz,
valamint ezeknek mi a szerepe:

Felhasználók táblája: users
A mezők: azonosító(id), felhasználónév(username), jelszó(password),
emailcím(email), jogosultság(priv). Ezek közül az azonosító az elsődle-
ges kulcs, és egyedi megszorítás valamint index van a felhasználónévre
építve. A jogosultság mező azt tárolja, hogy az adott egyed adminiszt-
rátorként, vagy normál felhasználóként tagja az oldalnak.

Feladatok táblája: problems
Ennek mezői: azonosító(id), feladat neve(name), nyelve(lang), a for-
rása(source), a hozzáadás dátuma(date), a feladat szövege HTML-
ben(text), a megszabott időkorlát ms-ban(time) és a megszabott me-
móriakorlát kB-ban(memory). Az elsődleges kulcs az azonosító, vala-
mint indextábla épül a feladatok neveire. A feladat szövege bizonyos
feladatoknál csak egy linket tartalmaz a megfelelő dokumentumfájlra.

Megoldások táblája: jobs
A beküldött megoldásokat tartalmazza. Mezői: azonosító(id), feladat
azonosítója(problemid), felhasználó azonosítója(userid), programozási
nyelv(lang), elért pontszám(score), valamint az evalúátor visszajelzése
HTML-ben(text), amely a kompillálási üzeneteket és az egyes tesztfáj-
lokon a futtatási eredményt közli táblázatos formában.

Bejelentkezések táblája: sessions
A bejelentkezések tábla információkat tárol az aktív bejelentkezési szesz-
sziókról. Mezői: userid, sessionid, date. A userid a felhasználó azono-
sítója), a sessionid az adott bejelentkezés azonosítója(és a reláció el-
sődleges kulcsa), a date pedig a beiktatás dátuma. Erre a táblára azért
van szükség, hogy a felhasználó ne mutathassa magát bejelentkezettnek
csak akkor, ha valóban be volt jelentkezve.

19



3.4 Evaluátor
Az evaluátor rendszer a Linux kernel által közölt adatok alapján állapítja

meg egy program futásidejét és a felhasznált memóriát. Teszteli továbbá,
hogy a beküldött forráskódból fordított program ad-e eredményt egy adott
tesztesetre, és helyes-e ez az eredmény. Minden feladathoz tartozik egy szett
bemeneti fájl és egy szett helyes kimeneti fájl, ezekkel van összehasonlítva a
program kimenete.

Vannak viszont olyan algoritmikafeladatok is az oldalon, amelyek meg-
oldása nem egységes, ilyenkor a fájlok összehasonlítása mellett vagy helyett
az adott feladathoz tartozó elbíráló program az adott helyzetnek megfelelően
ellenőrzi a megoldás helyességét.

A projekt ezen része az aeval könyvtárban található meg a mellékletben.
Ebben két könyvtár foglal helyett: core és userdata.

A userdata könyvtárban további két könyvtár található: sources és test-
files. A sources könyvtárban találhatóak a forráskódok, mindegyik olyan név-
vel, amivel a neki megfelelő megoldásbejegyzés az adatbázisban szerepelt(a
mellékletben ez a könyvtár üres). A testfiles könyvtárban minden feladat-
nak van egy könyvtára, melynek neve a feladat adatbázisbeli azonosítója(a
mellékletben csak az 1-es számú szerepel).

Egy feladat könyvtárában találhatók a bemeneti és kimeneti fájlok, a hoz-
zá tartozó ellenőrző program(grader.cpp), valamint egy leíró fájl(descriptor),
amely tartalmazza az összes tesztesetre a megfelelő fájlok neveit és egy pont-
szám-szorzót, amellyel az elbíráló program visszatérési értéke szorozódik, és
úgy adódik majd hozzá a pontszámhoz.

A core könyvtár tartalmazza az evaluátor magvát, az evaluate.sh Bash-
szkriptet(amely az előb említett send_solution.php-ből kerül meghívásra),
valamint az evaluator.cpp fájlt, amely az időt és memóriát mérő program. Az
evaluator.sh szkript megpróbálja kompillálni a beküldött forráskódot, majd
siker esetén meghívja a mérőprogramot, amely az előbbit alfolyamatként fut-
tatja és figyeli az erőforrás-felhasználását. Ez minden tesztesetre megtörté-
nik, végül pedig egy HTML kódú táblázat áll össze az eredményekről, eljut
az említett PHP szkripthez, ami az adatbázisba iktatja.

20



A mérőprogram futása közben a /proc fájlrendszerből olvassa ki a szük-
séges adatokat. Ha jelentős időtúllépés történik, például a program végtelen
ciklust tartalmaz, akkor le is állítja azt, ugyanis ennek leszármazottjaként
volt meghívva(fork, majd exec rendszermeghívással). Továbbá chroot metó-
dussal az is korlátozva van, hogy a beküldöt program hova tud írni, illetve
honnan tud olvasni(a csalások elkerülése végett).

ábra 3.2: Kódrészlet az evaluator.cpp fájlból

21



4. Irodalomjegyzék

[1] Jeffrey D. Ullman - Jennifer Widom: Adatbázisrendszerek, második ki-
adás, Panem Könyvkiadó Kft. 2009, ISBN 978-963-545-481-5

[2] http://en.wikipedia.org/wiki/Database (letöltve 28.04.2015.)

[3] http://hu.wikipedia.org/wiki/Relációs_adatbázis (letöltve 28.04.2015.)

[4] Siki Zoltán: Adatbáziskezelés és szervezés,
http://www.agt.bme.hu/szakm/adatb/adatb.htm (letöltve 29.04.2015.)

[5] http://en.wikipedia.org/wiki/Web_development (letöltve 2015.05.01.)

[6] http://en.wikipedia.org/wiki/HTML (letöltve 2015.05.01.)

[7] http://hu.wikipedia.org/wiki/JavaScript (letöltve 2015.05.01.)

[8] http://en.wikipedia.org/wiki/SQL (letöltve 2015.05.04.)

22


